AN ESTIMATE CAPTURE AND
MONITORING TOOL

A COMPUTER AIDED SOFTWARE ENGINEERING TOOL FOR
ESTIMATING AND MONITORING PERSONAL SOFTWARE
DEVELOPMENT PROGRESS

Dong Shao

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science

University of Toronto

© Copyright by Dong Shao 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-84201-0
Our file Notre référence
ISBN: 0-612-84201-0

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

An Estimate Capture and Monitoring Tool:

A Computer Aided Software Engineering Tool for Estimating and Monitoring

Personal Software Development Progress

Dong Shao
Master of Science 2003
Department of Computer Science

University of Toronto

Release Planning is a management framework for commercial software vendors to
estimate and track software releases. We developed an Estimate Capture and Monitoring
Tool (ECMT), a computer aided software engineering tool for estimating and monitoring
personal software development progress, to support the Release Planning management
framework at an individual level.

The goal of ECMT is to provide a tool aid for developers applying Release
Planning in order to determine if the Release Planning approach is practicable. ECMT’s
features are divided into three categories. The tracking time feature records time spent on
hierarchically organized tasks, and provides graphical views of time spent. The estimation
feature logs and analyzes the estimations of tasks as projects proceed. The combination of
estimation and time tracking make ECMT distinct from related works by providing

up-to-date progress measurement of projects.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

First of all, I wish to thank my supervisor, Professor David A. Penny, for his valuable
guidance. David put much effort into my work, and his helpful suggestions improved it
significantly. I would also like to thank my second reader, Professor Dave Wortman. His

input has greatly benefited this thesis.

Many thanks to my friends in DCS for their generous support. Discussions with them
inspired me in many ways and suggestions from them are highly appreciated. Special
thanks go to my wife, Wei Zhang. The work in this thesis would not have been possible
without her input. She shared every bit of my prosperous and hard time.

I also deeply appreciate my parents and sisters in China. They have always been there
for me and encourage me.

Finally, everyone in our department deserves my thankfulness. They provide the best

environment for research and study I have ever met.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

1 Introduction 1
1.1 Estimation in ECMTc.....cccooiiiiii ettt sttt ea et a b 3
1.2 Learning time management SKillS................ccc.cccvviiiiiiiiiiiiiic i 4
1.3 LOGGING tiMe AN ESHIMALES...........corvevoeeriii sttt bbb 5
1.4 TRESIS OVEFVIEWooovieeeeieeie ettt ettt ettt esb s s as e s et et eaae s e be et eabae st e e bs s sabaaas e e 6

2 Release Planning 7
2.1 Effective COTRE daysccoviiiurcccuiiiiiiiiiiiitii st s sa s ek b b 7
2.2 WOFK JACEOF ...ttt ea bbb et bbb et b 8
2.3 ESHIMQLIONvovvaereeeenieieareeiesse et ettt aeaas et eaasa s e eas s et e b s b e ae s ob e et e b e e b e b e e e b e sb e s b b e s s ab e n b e bt 8
2.4 CaPACILY CONSIPAINE ...ttt ea b d bbbttt 9
2.5 Stochastic Capacity CORSIFAINLccccoiiiiiiiiiinii et er s st et 9
2.6 Update release plan regularlyccccocoiiiiiiiiiin e 9

3 Background 11
3.1 Personal SOftWare PrOCESScccocccrieuniniiireccceciiiit ittt e e 11

3.1.1 OVEIVIEW OF PSP ...ttt e bbb et e ebe s 11
3.1.2 Time tracking i PSPovvreeirrieie ettt et ettt st st sr s st 12
3. 1.3 PSP and ECMT ..ttt st sa s bbb ea e en e b bbb s nn s 13
3.2 ESHIQLION ..ottt ettt sr s sttt s e s a s e s a e ea et e e e b e s b e b s e bb e bbb e bttt s 14
3.2.1 Function Point ANALYSIS .c..ccciieererirreeiireienccc ittt st essehness shssaese s snessresneas 14
3.2.2 COCOMO.....oieieree ettt ettt ctee et et reer et st sre s bbb s e as bt e e e s nsassasasssstsnensereane 16
323 DEIPRI 1uvivereieeeieeee ettt ettt bbb s ea R sa e ea e resaas 18
3.3 Personal time MARGZEIMENLccoovvimriiiiiciiee ittt bea 19
3.3.1 The 80-20 TULE .cveueiieeeeeiiririei ettt e bbbt sa st a e r st re e saeseeresee s e b ebat s esesens 20
3.3.2 PrioritizZe taSKS...cccoveeeeiirer ettt bbb ene 20
3.3.3 Planning, monitoring and reviewing regularly.........ccovviriiiinninniineeeress s 21
3.3.4 Personal time management in ECMT ..o 21
3.4 Time tracking t0ols available......................ccccovieiicciiiiicciniiiniii 22
3.4.1 Time tracking tOO1Sceceeeeiririiitieer ettt st e b st a e ae e 22
3.4.2 Tracking time and DILlINGc.ceoevieveieiciiiiniiieicc e er s s s b 25
3.4.3 MONItoring @MPIOYEESovevvermeiriiriiiiiiiisene it sres st s s s r s s et e e sa e e e s ae e ssrsteate s 26
3.4.4 Tracking SOftWAIE USAZE ...c.coveriiiririririiieiitieiiic ittt sae s b s s s 27

4 Personal Software Development Estimate Capture and Monitor 29

.1 THACKING FIMIE. ..ottt ettt sttt s b e s st en e eas s 30
v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.1.1 Organization of projects and tasks ... 30
4.1.2 Tracking tNEc.vovceceeriiiiiicrininiiiirreie et bbb e s st s n s e s bessebassa et sanea s ns 30
4.1.3 Reviewing time TeCOTAScoceerriiniimiiiiriinir et re s e bs s b ens 31

4.2 ESHIQLION «....oocveeveeieeee ettt ettt et et a et eete e b e siebe b cobs s s e e st esane s has b e s ean e saeesab e eta s 31
4.2.1 Statistical ESHMALION ...ccceeririrreiireecciiat e e sas s sas s b st sas s s e n e nern e 32
4.2.2 Updating estimates while MONItOTINg PrOBIESS ...c..cvrvivirisiermviiiiiisrer i seseseeesresesnesessssens 33
4.2.3 Convergence of the series of €StIMAate.......c.ccvviiiririiciiii e 35

4.3 Combination of estimation and MONIIOVINGc..cvvirviimniiiii e s 37
4.3.1 Estimating with historical data.........cccovivricininniiiiiiii s 37
4.3.2 Estimating with historical estimate SETIESocvvviriviiiiiiiiniiiiii e 38
4.3.3 T0-00 ST vurueeiriirirereeieietecee sttt see e e bbb bbb s es e s ea e bRt b ek h b e bbbt R e e naaes 40
4.3.4 PrOJECE SUMIMATYccverieiirreneiriiiieiese it eresesssse e s ses s tsss b sbe s b bssnststa e s ssbnsresssbasesbebeababeaesaeseaes 41

5 Prototype implementation 44
S 1 OVerview Of ECMT.......ocoocoiiiiiiiiii et e et 44
5.2 TH@C SIFUCKUFE ..o ettt st ettt teaes e sa s bs s et s e b st s e sae s e b e e set s b e eae e nbesatas 45
5.3 Details 0f @ PrOJECt OF TASK........cccouveeiariciiiiiiiieciiiiecc st 47
S THACKING LM ...ttt et b s ettt 49

S 5 REVIEWoveeieeeevet ettt ed e et 53
5.6 ESHIMALION ..ot ettt bbb e bbb 56
5.7 SUIIQFY PARE.......c.oee ittt ettt ea e a e b e e r b bbb e 58

6 Evaluation 60
6.1 Author s experience while implementing a feature...................cccccccooiiiiiiiniicniiininieis 60
6.2 Feedback Of ECMTcccoovoiiiiveiieiiieeieece ettt s e 62

7 Conclusions .63
70 COMCIUSTONS ..o.vov vttt bbbt s a e e bbb ae bt easer s eb st b 63
7.2 FUIUFE AIFECIIONSovieeveeeiiiii ittt a e et s st n s e r e et ae st aeane e 64
72,1 EXPETIMENLS ...oveniereniiitencieieetss ettt sass st sa s s e s s bbb et b b e s s st s s e eas s sas et aaesea e rnean 64
7.2.2 Summary at project-level based on individual recordsovvvevvvmiienvee i 65
7.2.3 Using PDA to capture work away from desk.........cocouviiviiiiiiiinniieecc i 66
7.2.4 Extendable modules to support estimation approaches..........cocvvvieiniiiiniinnienieneenecnnns 66
Reference 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction

Penny [Penny 2001; Penny 2002] proposed Release Planning as a management
framework for commercial software vendors to estimate and track software releases. A
successful commercial software vendor produces new software releases that provide
features required by customers. Product management in the organization should be
aware of the needs of customers and business, and make release plans that include new
features to be delivered in the product by the release date. The software development
division in the organization should estimate the schedule, track development and
implement all features before the release date.

Inaccurate schedule estimation and schedule slippage are common problems in
many software projects [van Genuchten 1991; Ma 2000], and Release Planning also
needs to deal with these problems. In part, these problems are due to individual
software developers [Brooks 1995; Humphrey 1995]. In Release Planning, a release
plan specifies features required in the current release. The development group will
break the features down into appropriately sized parts and assign them to developers
considering their skills. Developers measure the work effort of each feature. Then
development managers collect data from each developer, and summarize it as the
overall estimate for the release. However, some software developers are not willing or
able to make accurate schedule estimates. Furthermore, even if they make an accurate
initial estimate, they often fail to monitor their progress consistently. Without this
monitoring information, it is hard for developers to update estimates to reflect their
current development progress, thus their estimates and hence the overall project

estimate will become inaccurate,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Even when developers are able to make accurate estimates and corresponding
plans, sometimes they are behind schedule due to a lack of work efficiency. There are
many causes for low work performance. For instance, a bad work environment, low
morale, outdated hardware and software tools, lack of domain experience, and so on. A
lack of personal time management accounts for some developers’ low work
performance. We characterize the absence of personal time management as
unproductive days, last minute rushes to meet a deadline, and infeasible plans. When a
schedule slips, developers should identify the reason. If the reason is a lack of personal
time management, they need to improve their time management skills.

Continuous and quick feedback has been considered an effective treatment for
schedule slippage [Beck 2000]. By taking measurement of development progress as
feedback, developers can determine whether they are on schedule or not. If they find
their estimates are not true, they can modify them to be more accurate. If they are
behind schedule due to lack of time management, the feedback will motivate them to
work more efficiently and improve their time management skills. In this way, feedback
helps to avoid personal schedule slippage.

Trying to use continuous and quick feedback to deal with personal inaccurate
estimation and schedule slippage in Release Planning, this thesis develops an Estimate
Capture and Monitoring Tool (ECMT), a computer aided software engineering tool for
estimating and monitoring personal software development progress, to support the
Release Planning management framework at an individual level. ECMT supports
estimating and monitoring during development by allowing developers to make
schedule estimates and record actual time spent on each task as feedback. What makes
ECMT unique from existing software tools is that it combines estimation and

monitoring. This combination provides up-to-date progress measurement of projects,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hence developers can be aware of their development status better.

1.1 Estimation in ECMT

While working on some intellectual work, for example, reading, writing,
designing, developing software, people can get into an ideal work state where they just
concentrate on the work totally, work fast and effectively, and the work goes smoothly
as if no effort is required. In that way, people are even unaware of the passage of time.
Some psychologists call this state “flow”. DeMarco named it wuninterrupted
time,[DeMarco and Lister 1987] since this state is easily interrupted, for example, by
phone calls, friends dropping by or something similar. The uninterrupted time for the
software developer is the actual work time. We call it dedicated time in this thesis, and
use it to measure the work requirement and work capacity (chapter 2).

There are two kinds of estimates in ECMT: work capacity estimates and work
requirement estimates. Usually, developers are unlikely to spend eight work hours on
one project a day. Because ECMT is project-oriented, we only consider the dedicated
time for each project, which influences the project’s schedule. ECMT requires
developers to estimate their dedicated time for a project in one day, rather than using
eight hours a day to calculate work capacity. We calculate work capacity of a developer
in a period by multiplying workdays with the estimate of the dedicated time in one day.

In ECMT, we assume that development managers divide a project into small
development tasks, and assign them to developers. ECMT asks developers to estimate
the dedicated time required for each development task. For example, a developer
estimates that a print function in an account application needs 40 hours. After
summarizing the dedicated time of each task, the developer will get his or her work

requirement estimate for the project. By comparing the work requirement estimate and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the work capacity estimate, the developer is able to know whether the current estimate
of work requirement is less than work capacity.

We use statistical estimates in ECMT rather than single value estimates. Single
value estimates are common in most situations, for example, a developer, Bob, predicts
that he needs 40 hours to develop an XML-parsing software component. However,
since estimation is predicting or guessing something, no one has 100% confidence that
the estimate is accurate. An estimator might intend to say, “I think this task has a 50%
probability of being completed in 35 hours, and 50% probability not. However, I have
80% confidence that it will be achieved in 40 hours.” Therefore, in ECMT, we use
stochastic variables to make estimates, and assume that distributions of variables are
Normal distributions (section 4.2.1). This estimation method is more complex than the
single value method, but it can answer some practical questions, such as how much
confidence a developer has to complete all tasks before the delivery date, how many

workdays are required for 80% confidence, and so on.

1.2 Learning time management skills

For software developers, time management skills mean accurate estimates,
using time in an efficient way, and achieving the project on schedule. The following are
the assumptions for improving developers’ time management skills used in the ECMT.
1. People tend to have consistent patterns for using time. As for spending time, one

inclines to have the same amount of working time day after day, week after week.
2. By recording the work time spent on tasks, developers can collect historical data to
know their work efficiency and how much time a development task will take. When

estimating new similar tasks, they can use these data to make better estimates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Based on estimates, developers are able to devise detailed plans for projects. These
plans suggest the amount of work they should do in one certain day, and ensure that
they can accomplish their projects if they follow the plans strictly. In order to keep
estimates accurate and plans feasible, developers need to monitor their progress,
which means to track their work time and check time spent records against their
plans. Only when developers monitor their progress, can they know whether their
estimates are accurate and plans are feasible. Hence, they can update the estimates
and plans. On the other side, the time log feedback motivates developers to work
hard to follow the plans and estimates, as well as provides confidence in their ability

to deliver a project on schedule.

1.3 Logging time and estimates

Keeping a time log on paper without the help of tools is inconvenient.
Developers have to write down each step of an activity, and need good skills to
organize the data format for easy recording and reviewing. Some books[Humphrey
1997] provide the time log table, but it still takes time to learn how to use them.
Moreover, it is hard to enforce their usage. Updating estimates also needs some effort, it
requires developers to review the time log and write down new estimates. Updating
estimates is important, since if the estimates are not updated for a long period, they
become outdated.

After recording time and estimates, analyzing them requires much effort.
Manually summarizing the time spent on each task or each day, comparing estimates
with the time log to decide whether the project is on schedule or not, and adjusting
estimates based on historical data may make many developers abandon the effort.

We developed ECMT to assist developers in solving such problems. The user is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

only required to input estimates and record the start time and stop time of an activity.
ECMT will track work time and analyze estimates. In addition, it provides graphical

views and text summaries for analysis.

1.4 Thesis overview

This thesis is composed of six chapters:

Chapter 1: This first chapter introduces ECMT by providing some background, and by
explaining what it is, its motivation.

Chapter 2: This chapter gives an overview of the Release Planning approach.

Chapter 3: This chapter explores research relating to ECMT. In particular, personal
software process, software estimation, general time management, and some available
time tracking tools are examined.

Chapter 4: This chapter introduces the ECMT concept in details. Tracking time,
estimation, and combination of estimation and monitoring features are designed in
ECMT for supporting Release Planning approach.

Chapter 5: This chapter provides details on ECMT features and how they are
implemented.

Chapter 6: This chapter discusses the author’s experience with ECMT and feedback of
colleagues who used this tool.

Chapter 7: The final chapter draws some conclusions, and discusses directions for

future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Release Planning

This chapter gives an overview of the Release Planning methodology.

Release Planning is a management framework for commercial software vendors
to develop packaged software, proposed by Penny [Penny 2001; Penny 2002]. Aimed at
small-size and middle-size fast-paced commercial software vendor organizations where
there is little time or management focus to enhance the process, Release Planning
provides a simple yet elegant approach to aid vendors in making better project plans
and tracking development. Release Planning concentrates on the coding phase in
software development. This thesis is based on Release Planning, but it concentrates on
the personal level.

A successful commercial spftware vendor produces new software releases that
provide the features required by customers. Product management in the organization
should be aware of the needs of customers and make release plans that include new
features to be delivered in the product by the release date. The software development
division in this organization is supposed to implement the features by the release date.
One of the goals of Release Planning is to improve the communication between the

product management and software development organizations.

2.1 Effective coder days

By definition, eight uninterrupted (section 1.1) hours compose one effective
work day. If it is for coding new features, we call it an effective coder day. Effective
coder days are used to measure the work requirement (section 2.3) and work capacity

(section 2.2) in Release Planning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Work factor

Body-present time is the period of time during which a person is available in the
work place. It includes uninterrupted time and interrupted time, such as meeting,
chatting, having coffee, phone call time, and so on. In Release Planning, dedicated time
is the uninterrupted time for coding new features in some release. The Work factor
shows the ratio of dedicated time for coding new features to body-present time.

DedicatedTime
Body _ presentTime

WorkFactor =

Work factor is a helpful parameter for software developers. By collecting
time-spent data, developers can learn their work factor, and thus can predict the
available amount of dedicated time in a certain period. We call the amount of dedicated
time for a project work capacity.

Assume that a developer, Tom, has work factor 0.45, and he is working on only
one project. If there are 40 workdays before the delivery date, then his work capacity is

0.45x 40 = 18 effective coder days.

2.3 Estimation

A release plan specifies the features required in the current release. The
development group will break them down into appropriate sized parts and assign them
to developers considering their skills. Developers measure the work effort of each
feature by dedicated time, which is called the work requirement. Then development
managers collect data from each team member, and summarize it as the overall estimate
for the release. Such an estimating process is not very complex, and most people do not
need extra training.

This bottom-up estimation approach pays much attention to personal difference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9
This difference is so large that one programmer may have ten times the performance

that of another [H. Sackman 1968]. It is quite possible to get an inaccurate estimation

when ignoring this difference.

2.4 Capacity constraint

After completing a project, work requirement must have been equal to work
capacity, since we measure them both by the effective coder days spent on the project. It
is a de facto result. However, during the course of the project, we can only make
estimates for work requirement and work capacity. If work requirement is less than
work capacity, we probably have enough human resources for this release. If not, we

are at risk of schedule slippage.

2.5 Stochastic Capacity Constraint

The precise capacity constraint is not suitable for estimating in advance.
Release Planning uses stochastic variables to make estimates rather than using single

value estimation. We will discuss it in chapter 4 in detail.

2.6 Update release plan regularly

If we make estimates and plans only at the beginning of a project but do not
update them, they will no longer reflect development progress after a period. From a
single developer’s view, updating estimates means re-estimating the remaining work,
and the work factor. From a project’s view, it needs to summarize data from developers
and compare total remaining coding capacity with the total remaining coding
requirement. Through updating the estimates, the team is made aware of its

development progress, and hence can take appropriate actions to avoid schedule

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

slippage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

3 Background

This chapter explores research relating to ECMT. In particular, personal
software process, software estimation, general time management, and some available

time tracking tools are examined.

3.1 Personal Software Process

In determining whether process improvement principles work for individual
software professionals [Humphrey 2000], Humphrey developed the Personal Software
Process (PSP) '[Humphrey 1995; Humphrey 1997]. PSP attempts to provide a defined,
planned, and measured way for software engineers to improve the quality, predictability,

and productivity of their creative engineering work.

3.1.1 Overview of PSP

Software process is the sequence of steps required to develop or maintain
software [Humphrey 1995]. Unlike most process improvement methods that address
the organizational level, e.g. Capability Maturity Model (CMM) for software,
Humphrey’s PSP focuses on the personal level. PSP assumes that a software developer
can achieve better performance by applying some reasonable software engineering
principles. These principles are the measurements of personal performance. Taking
these measurements as feedback, software developers will improve their performance.
Humphrey introduces these principles into PSP through a gradual process. Figure 3.1

shows the progression of PSP.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

) PSP3
Cwalie

Personal Cyolie Development
Process

PSPL1
PEP2
Personal Design Templutes
Quality Code Reviews

Manage i Design Reviews
/ P&PL.L
eligal
" PSP Task Planming
! arson al e Schedule Planning
Planning Size Extimating =
Process Test Report J
PSP3.1
PSPO Coding Standard
Current Process Size Measurement
Baseline Time Recording Provess Improvement Proposal
Personal Defect Recording
Process Detect Type Standard

Figure 3.1 The PSP process development

PSP is a practical methodology to help individual software professionals
become more effective. Some researchers [El Emam 1996; Ferguson 1997] have found

positive results for software defect quality, size estimates, and planning when applying

PSP.

3.1.2 Time tracking in PSP

Humphrey supports time tracking in PSP as well as providing detailed steps to
create the time log in his book, “Introduction to the personal software
process”’[Humphrey 1997].

The book proposes a standard time recording log, as shown in Table 3.1.

! PSP and Personal Software Process are trademarks of Camegie Mellon University

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3.1 TIME RECORDING LOG

Student Date
Instructor Class
Date | Start | Stop | Interruption | Delta | Activity | Comments C
Time Time

The form’s head includes name, recording date, instructor, and class (this form
is for students). Each time period is entered on one line of the form as follows:

® Date. The date for a certain activity (for example, a task).

® Start. The starting time of the activity.

® Stop. The end time.

® Interruption. Any time lost due to interruptions.

® Delta time. The time spent on the activity, in minutes, from the starting time

to the end time, subtracting the interruption time.
® Activity. A descriptive name for the activity.
® Comments. A more complete note on the activity.

® C (Completed). Check this column if the activity is complete.

It is a well-defined recording form for logging activities. However, there are
some suggestions in the book for using the form: keep the engineering notebook
(including the forms) with you at all times; use a stopwatch to track interruptions;
summarize the time promptly (in another form). Maybe some developers like this way,

but not everyone can stand so much effort, especially over a long period.

3.1.3 PSP and ECMT

ECMT uses time tracking technique in PSP to monitor the development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

progress. However, since ECMT is a computer aided software engineering tool, users
can avoid writing down all time tracking records and summarize them manually. If only

considering the time tracking feature in ECMT, we can take ECMT as a PSP tool.

3.2 Estimation

Brooks believes that software estimation is one of the “three great challenges
for half-century-old computer science”. Even though there have been many advances
on theory and practice, there is still no method to make software engineering as
predictable as civil or electrical engineering [Brooks 2003].

In most estimation models, there is a relation between cost and effort
(person-months needed), for example, one person-month is taken as $5000; thus, given
effort estimates in person-months, it is possible to translate it to cost estimate. In this
thesis, we consider effort and cost estimation synonymous.

The following are some popular estimation approaches.

3.2.1 Function Point Analysis

Albrecht developed Function Point Analysis (FPA) in the 1970s [Albrecht
1983]. Instead of using “lines of code” as a measure of software size, it measures
systems from a functional perspective. FPA assumes that the number of different data
structures is an accurate indicator of software size. Therefore, it is more suitable for
business applications, where data structures play the dominant role in development, as
opposed to applications emphasiz algorithms (e.g., compilers).

There are five major components considered in FPA: the number of input types
(I), the number of output types (O), the number of inquiry types (E), the number of

logical internal files (L), and the number of interfaces (F). After we classify each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15
component in one of the above five major component catalogs, we assign it a rank of

low, average, or high with some predefined rules (refer to the IFPUG Function Point

Counting Practices Manual). Then FPA assigns a weight to each component with the

rank shown in the following table:

Table 3.2 Counting rules for function points

Complexity Rating Input (I) | Output (O) | Inquiry (E) | Logical Interfaces
internal (L) | (F)

Low 3 4 3 7 5

Average 4 5 4 10 7

High 6 6 15 10

From the data in the above table, the number of (unadjusted) function points,
UFP, can be calculated. It is a weighted sum:
UFP = 3 x Low (I) + 4 x Average (I) + 6 x High (I)
+4 x Low (O) + 5 x Average (O) + 7 x High (O)
+ 3 x Low (E) + 4 x Average (E) + 6 x High (E)
+ 7 x Low (L) + 10 x Average (L) + 15 x High (L)
+ 5 x Low (F) + 7 x Average (F) + 10 x High (F)
The final Function Point Count is obtained by multiplying this UFP by an
adjustment factor referred to a VAF (value adjustment factor):
FP =VAF x UFP
The value adjustment factor reflects 14 general system characteristics (GSCs,
details of how to evaluate them are available in IFPUG’ Function Point Counting
Practices Manual) that influence development effort of the application counted. The
degree of influence for each of these characteristics ranges on a scale of zero (no

influence) to five (strong influence). The total degree of influence (DI) is the sum of

? The International Function Point Users’ Group (IFPUG), http://www.ifpug.org
3 The International Function Point Users’ Group (IFPUG), http://www.ifpug.org

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ifpug.org
http://www.ifpug.org

16
scores for all characteristics. Then, the IFPUG Value Adjustment Factor (VAF) will be

defined as:

VAF = 0.65 + DI/ 100

The Function Point method addresses software size estimate. Some researchers
have analyzed much data to get information how many function points can be coded in
an average person-month. Thus the FPA can be converted to estimate effort and cost.
The relation between function points and lines of code in a certain programming
language is also available. This makes it possible to use FPA with other estimation
methods.

ECMT does not use FPA directly. ECMT measures work requirement by
dedicated time. However, in practice, users can convert function points estimates to

dedicated time estimates, hence FPA can work together with ECMT

3.2.2 COCOMO

Bohem proposed the COCOMO (COnstructive COst MOdel) cost estimation
model in 1981 [Boehm 1981]. In basic COCOMO, the following effort equation shows
the relation between effort and software size:

E = bKLOC*

Where b and ¢ are constants that depend on the kind of project considered,
KLOC (thousands of source lines of code) represents software size, and E is effort
measured in person-month.

In COCOMO), a project is classified into 3 categories:

® Organic. The project is developed using stable techniques, and developers

have much experience on similar projects. Usually, the product is not very

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

large, and needs little innovation. Example: An accounting system.

® Embedded. There are tight and inflexible constraints for this kind of project.
A great deal of innovation is required. Example: Air traffic control,
embedded weapon systems.

® Semidetached. The project’s characteristics are intermediate between
organic and embedded.

The required effort (measured in person-month) is obtained from the following

formulas:
Organic: E =24x(KLOC)"*
Semidetached: E =3.0x(KLOC)'"?
Embedded: E =3.6x(KLOC)'*

Basic COCOMO is suitable for early, rough estimates, since it is based on a
simple and crude classification of projects into only three types. In the book Software
Engineering Economics[Boehm 1981], there are two more complex models described:
Intermediate Model and Detailed Model. The intermediate model uses an Effort

Adjustment Factor (EAF) and different coefficients for the effort equation:

Organic: E = EAF x3.2x(KLOC)"®
Semidetached: E = EAF x3.0x (KLOC)"*
Embedded: E = EAF x2.8x(KLOC)"*

The EAF is determined by 15 Cost Drivers, such as Product Complexity,
Programmer Capacity, Applications Experience and "Use of Software Tools”, all of
which affect productivity. Therefore, since the intermediate model describes projects
more accurately, it is supposed to produce better estimations.

The detailed model differs from the intermediate model for it is phase

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18
dependent. It defines six phases: Requirements, Project Design, Detailed Design, Code

and Unit Test, Integrate and Test, and Maintenance. For each phase, there is a different
effort multiplier for each cost driver. By considering situations in different development
phases, Boehm argues that the total estimate will be more accurate.

COCOMO 2 is a revision of the early COCOMO model {Boehm 2000]. There
are two models in COCOMO 2: the Early Design model and the Post-Architecture
model.

A software project uses Early Design model at early stages where little
information is known. The Post-Architecture model is a more detailed estimation
model that is used after a software architecture has been developed. Both have the
following basic effort equation:

E =2.45x EAF x (KLOC)®

Where, EAF is the effort adjustment factor. EAF is a product of seven effort
multipliers in the early design model, while it is the product of seventeen effort
multipliers in the post-architecture model (details in [Boehm 2000]).

COCOMO provides the relationship between work effort and software size. If
we know the software size in LOC, we can use COCOMO to make a rough estimate in
dedicated time. It is especially helpful when we have no ECMT historical data, but have
such data in LOC. However, it is not clear if COCOMO applies to individual feature

estimates or to entire project only.

3.2.3 Delphi

Although major research work in software cost estimation field has been

devoted to algorithmic models, expert judgment [Hughes 1996] is a commonly used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19
estimation method in practice. A Dutch study carried out by [Heemstra 1992] revealed

that 62% of estimators and organizations use the intuition technique. The wideband
Delphi approach for software estimation [Boehm 1981] is a structured technique of
expert judgment. It is a better approach than many algorithmic models when there is no
historical data. Experienced experts with a good understanding of the project are crucial
in applying the Delphi approach. This approach has the following steps:

1. Experts are issued the specification and an estimation form by the coordinator.

2. A group meeting is held to discuss the project and estimation issues.

3. Each expert independently completes the estimation form.

4. Estimates are returned indicating the median estimate and the expert’s personal
estimate.

5. Another group meeting is held to discuss the results.

6. Experts prepare a revised independent estimate.

7. Steps 3-6 are repeated until a consensus is reached.

Delphi can make accurate estimation in many situations, but often it will require
a long time to achieve consensus amongst all the experts.

ECMT is a personal tool. If a developer takes a crucial task that has a wide
impact on the progress of the overall project, the team leader should consider using the
Delphi approach to help the developer to make an accurate estimate. Future version of

ECMT could provide direct support for this approach.

3.3 Personal time management

Lack of good personal time management will result in unproductive days, last
minute rushes to meet a deadline, infeasible plans, ignoring long-term objectives, and

so on. Personal time management is a group of common sense strategies, some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20
reasonable suggestions for managing time, for instance, planning tasks with priority,

using to-do lists, and making good use of an agenda [Covey 1990; Covey 1996;
Davidson 1999]. There is little theory or experiment research on these approaches,

however we can learn something by studying them.

3.3.1 The 80-20 rule

Around 1900, Italian economist Vilfredo Pareto, in his study of the patterns of
wealth and income, observed that the distribution of wealth was predictably unbalanced.
About 80% of the wealth in most countries was controlled by a consistent minority,
about 20% of the population. This pattern is summarized as “80:20 rule” or “Pareto’s
Principle”. In 1998, Richard Koch [Koch 1999] observed that the imbalance applies to
many aspects in modern life, such as stocks, company sales, and even web site
performance. For time management, this rule argues that, for common situations, 20
percent of the total time gives out 80 percent of results and the remaining 80 percent of
time only generates 20 percent of the output. 20 or 80 percent is not extremely accurate
when used in this way. The principle gives a hint for time management by showing that
most of the results come from a minority of time. If we can manage time appropriately,
and make as much of our time “20 percent” time, it is possible to achieve greater results
with the same amount of time. That means we can be more productive if we know how

to use time efficiently.

3.3.2 Prioritize tasks

Prioritizing tasks is an important aspect in personal time management. Each

person has his or her goals, long term or short term. Usually, we can decompose a goal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21
into several tasks. The task list is a list of all the tasks to be carried in a day or a period.

However simply writing down such a list and following tasks one by one is not enough.
Since in that way, tasks at the top of the list often have the best chance of being done
first, no matter whether they are urgent or not.

That is why we need prioritize tasks. By giving important tasks higher priority

and sorting tasks by their priorities, we can put more concentration on important tasks.

3.3.3 Planning, monitoring and reviewing regularly

“Since personal time management is a management process just like any other,
it must be planned, monitored and regularly reviewed.” [Blair 1992] Blair summarized
time management skills from a broader view.

Making a prioritized task list helps one to concentrate on important tasks,
therefore maximizing the use of time. Monitoring time by recording all activities (not
only tasks in the list) will reveal where time is spent. Reviewing a time log is important.
This is where we compare the time log with the original plan. If it agrees with the plan,
we will have confidence that everything is under control. Otherwise, it will motivate us

to follow the plan more strictly or modify the infeasible plan.

3.3.4 Personal time management in ECMT

ECMT attempts to improve developers’ work performance by applying some
personal time management skills. A to-do list based on estimates and a time log helps
developers to make daily plans. This to-do list can be seen as the tasks with high priority.
Moreover, ECMT allows developers to monitor each development task, as well as

provides text and graphical summaries for users to review their work easily.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22
3.4 Time tracking tools available

There are many time tracking tools available to fit different requirements.
According to their purposes and usage, time tracking tools can be categorized into four
classes:
® Time tracking tools: mainly for tracking time.
® Tracking time and billing: mainly for billing.
® Monitoring employees: working as a spy program to monitor employees’ use of

computers.
® Tracking software usage: recording work time by collecting time spent on certain

software applications.

3.4.1 Time tracking tools

Tools in this category provide general time tracking features. Users manage
their tasks and track time as a stopwatch (click on an icon to start and stop one timer).
However, these tools are not intended for any particular purpose. ECMT provides

similar tracking time features.

3.4.1.1 Time Tiger

(http://www.indigo1.com/timetiger/learnabout.asp)

Time Tiger takes simplifying the entry process as a design objective. Figure 3.2

shows its interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.indigo

23

[Mothing)

Arbiter code dey
@ Review manuals
Team meetings

Figure 3.2 Time Tiger

Time Tiger provides a small task list that includes user-defined tasks in a day.
The user clicks on the current activity item, and Time Tiger logs the time. Time Tiger

provides a report wizard that assists the user in analyzing the time logs.

3.4.1.2 Time Track

(http://timetrack.sourceforge.net/)

Time Track is a simple Personal Software Process tool to help users track their
time on projects and activities. Time is input through a Java Swing GUI and recorded in
an XML file. Users can also use some other tools to manipulate the XML file to

generate other desired report.

Egjﬁme Tracker

clic 3
] Duration ol Ac : ask:
18i2 Adding new Dy... |
18126/01 10:00 PMi45 Development Merlot
18726/01 9:37 PM |22 Email
18126401 9:00 PM 137 Documentation [TimeTrack Readme for1.0...
18r26/01 8:00 relop TimeTrack epackaged fo... .

Figure 3.3 Time Tracker

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

3.4.1.3 GnoTime (formerly known as GTT) - The Gnome Time Tracker

(http://gttr.sourceforge.net/)

GnoTime provides many features more than a simple stopwatch. The project
webpage describes the tool as such: “The Gnome Time Tracker is a desktop utility for
tracking the amount of time spent on projects, and generating configurable reports and
invoices based on that time.” By organizing projects into a tree structure, some projects
can be the sub-projects of others. The tree can be expanded or collapsed to simplify
viewing (figure 3.4). Besides the basic features, GnoTime allows users to do simple
project planning, such as making to-do lists and estimating the amount of time needed
to complete the project, but it does not support continuously updating estimate
information. Moreover, this application provides basic billing support.

GnoTime is the most similar tool to ECMT. However, their purposes are
different. ECMT combines the estimation and tracking time functions to assist
developers to make better estimates and avoid schedule slippage. GnoTime provides

similar functions, but does not combine them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

+ Grome 1ine 1r
1 File Edit

| Todsy |Ttt|e

‘ ‘ . Description] 2
{ 345850 010310 [FGhoTime port and maintain
| 00:00:15 - hug intrval edit journal
: - - = completed finished projects |
00:35:37 - - cut tree paste is buggy, anly top is pasted
01:16:15 - - autosave autosave data peridocially
11:44:41 - - backup files add backup support
00:14:39 - - gtt-show bug bug it pi-sum print
01:52:01 - - dir gnotime.d directory
04:51:19 - I~ doubleclick doubleclick to start projects
01:18:01 - - filesave fix sawve-to-file
02:42:35 - I time step watch for too-large time step
31:32:30 - [todo export export todo-list in ascii or report
01:00.00 - - collapse save collapse-expand state
|} 01:48:50 - - command command line callbacks
1 08:38:27 - - iclle credit dialog hox to credit iclle time
00:13:32 - = menu add edit entry to menu
00:26:20 - - new proiect oe: hew project gets focus

Figure 3.4 Gno Time

3.4.2 Tracking time and billing

Tools in this category are mainly for billing. For example, a consulting company
uses such tools to track the time spent on its client, and calculates the fee according to
the time log.
3.4.2.1 Time Track

(http://www.trinfinitysoftware.com/timetrack.shtml)

Time Track is a time logging application originally designed “for consultants
and freelancers to minimize time spent logging hours and to enhance billing accuracy.”
This application provides billing functions besides common time tracking features. The
following figure shows the interface for calculating the charge based on the time

recorded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.trinfinitysoftware.com/timetrack.shtml

26

80 Rate Calculator

File: | Project X "
|

Total Time: [00:31:53

Rate: $§45.00 | Per Hour

Total Charge: § [23.91]

Figure 3.5 Time Track

3.4.3 Monitoring employees

Tools in this category are intended to monitor employees’ work by tracking their

time spent on computers.

3.4.3.1 TimeFix - Employee Time Tracking Software

(http://timefix.aklabs.com/)

“TimeFix is an effective multi-user software solution for automatic tracking and
logging of time you and your colleagues spend working with various software
applications.” TimeFix can work as a personal time tracking software, but it is mainly
for monitoring what application and its time that employees have used. After installing
a small monitoring program on each employee’s PC, the manager can see time reports

for software usage on all computers.

3.4.3.2 Time Hunter

(http://www.structurise.com/TimeHunter/index.htm)

Time hunter helps business managers to keep track of how their employees
spend their time on computers. It logs applications, documents, and internet sites
employees have used or visited. At the end of the workday, it sends a log to the manager.

Time Hunter also provides a graphical view of time data for the manager.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www

27

3.4.4 Tracking software usage

When most of a developers’ work can be done using computer applications, the
running time for each application is an indication of work time. Some applications use
this indication to track users’ work time.
3.4.4.1 Smart Work Time Tracker

(http://tracker.aklabs.com/)

Some people have to use special software applications to do their main work,
for example, using Visual C++ to code, Microsoft Word to write documents and so on.
Smart Work Time Tracker (SWTT) provides the ability to log the amount of time spent
on different software automatically. In such way, SWTT collects the data concerning
working time consumption and distribution. SWTT is sophisticated enough to judge
whether a user is working or not. Suppose that a user runs an application, and then goes
to lunch. After a while, SWTT on longer detects any activity on the keyboard or mouse,
it considers the user is away and thus will stop tracking time. However, if some work is
done without using any software, SWTT will not log that work time nor add to SWTT
time log.

It is better than other tools if users’ work is totally based on software running on
one computer, since users even do not need to act on a stopwatch. However, some
software development requires developers to think, work with paper, or on different
systems, and then SWTT is not able to count this work time in. Moreover, SWTT
cannot distinguish tasks using the same application (e.g., coding versus debugging

when using Visual C++).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://tracker.aklabs.com/

28

Smart WorkTime Tracker 1.213 Pro -- [C:\W#PROJAhome]

SICW View Reports. Config . Help
Action » _ e | |
project Fles , YorkTime Tracker ﬂ = L IE & X : @R &
Application base ~ * | MSDN Library; Quick info | To-da lst]
Vigwr basks g (.. au‘OQITUUtDlSj' -~ Achivity lime
- a selecte:
l element are displayed here, Total 1:30:59
*#3File and archive manager ” Today G042 [- - aLd)
#3 Borland Delphi (switmsc) 1| Yesterday ¢:00:00 |]
EBO""":C' ?e"’hi (SmertwTT) Average 00001 (FRiwacpiiinasy
asprotec
T Windows Help Fistuse 2406011850 Records 166
; MSDN Library o
5l Borland Delphi [Project) Last use 27.07.01 21:44 Build time 171ms
¥3 Borland Delphi (uEIBuilder) 3 | og:(last 24h} :
g gz::::: EZ:E:: {:ﬂj\;ﬁgok] ‘‘‘‘‘ Start ¢ Application Duration
16:43 MSDN Library 0:01:57
¥l Microsoft Visual C++ (SWTTH... 15:44 MSDN Library 0-00:01
{7l Borland Delphi {switloader) 15:43 MSDN L!blat}l 0:00:04
*¥File and archive manager [(pas)] 1233 mggn t!g'af? 81 33315
A . : ibrary :00:

E?‘:‘""j Delohi (LooRepai) 1542 MSDN Librayy 0:00:09

= Boddand Daloh Praiect 15:41 MSDN Library 0:00:04

o : TR 15:39 MSDN Lib 0:00:07 &
o a%;%e X Iil,'J L E 1R24 KACTIAL | |krfry nnnns
Status

Figure 3.6 Smart WorkTime Tracker

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 Personal Software Development Estimate

Capture and Monitor

This chapter describes the key features required for supporting Release
Planning at the individual level. ECMT’s features are divided into three categories. The
tracking time feature records time spent on hierarchical organized tasks, and provides
graphical views of the time spent. The estimation feature logs and analyzes the
estimations of tasks as projects proceed. The combination of estimation and tracking
time provides up-to-date progress measurement of projects.

Before we describe ECMT, some terms are explained here.

Task: A task is a piece of work that must be done. As for software development,
we often take a feature as a task. We can estimate the work time for a task and monitor
the progress of it, which means tracking the work time on it. Developers should
estimate all development tasks. For non-work-related tasks, for example phone time
and chat time, developers can ignore the estimation, but still track their time.

Project: A project is a combination of tasks and/or some other projects, and it
can be planned over a period of time. A project in ECMT can be considered to include
all the tasks assigned to one developer in a software release (which is often developed
by a development team.). The work requirement estimate of a project is the sum of all
tasks in the project. As a reflection of the actual project, the project in this system has a
start date and a deadline. We can estimate the development work capacity (section 2.2)

between them.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

4.1 Tracking time

Tracking time records where developers’ time goes. These records assist
developers to understand their time spending habits and are used to track the accuracy

of estimations.

4.1.1 Organization of projects and tasks

A tree structure is convenient to manage hierarchically structured information.
Since developers may have many tasks which are accessed often, a tree structure is
selected to organize all the tasks in ECMT. Every task is represented by a leaf node in
the tree, which is called a task node. Related tasks are grouped under a non-leaf node
that is given a name to describe the reason why they are in the same group. Such
non-leaf nodes are project nodes, and a project node can contain some other project
nodes besides the task nodes. With this structure, the user can easily access any project
or task for tracking or some other operations, for example, renaming, changing

description, deleting, adding new projects or tasks, and so on.

4.1.2 Tracking time

4.1.2.1 Stopwatch to record dedicated time

Dedicated time is the actual work time (section 1.1), and has an effect on the
schedule. ECMT records dedicated time rather than body-present time (section 2.2).

A design goal of ECMT is to make it easy for users to track time. A stopwatch is
the common way to record a period of time spent on an activity. Each task in ECMT has
a stopwatch to record the time for it. At the start time and stop time, users trigger the

stopwatch, and ECMT will log all records for each task (operation descriptions in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31
section 5.4).

4.1.2.2 Interrupted time

The “uninterrupted time” (section 1.1) is easy to be interrupted by phone calls or
friends dropping by. Although users can track phone time or chatting time as tasks,
many people may not like to use a stopwatch before picking up the phone, especially if
such time is too short or the user does not want to collect such non-work-related data.
However, if such time is recorded in the work time, the time log will be inaccurate. In
ECMT, the interrupted time is used to reflect such time. The user can add “interrupted
time” for a time record to show there is a period that is not productive time. ECMT will

subtract it from the total work time.

4.1.3 Reviewing time records

Reviewing time records is a way we get development feedback. Different views
are provided to help developers understand the tracking time data. Graphical views
provide an easy-to-understand way to know where developers spend time. There are
two kinds of graphical views in ECMT. The chronological day graphical view describes
the work done in a workday. The time distribution graphical view shows the ratios
among the tasks. Text views give most detail information. Moreover, we can modify the
time record in the chronological day graphical view (operation description in section

5.5).

4.2 Estimation

ECMT attempts to provide an efficient way for developers to create, track, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32
analyze estimates. ECMT’s estimation functions are based on the estimation approach

used in Release Planning. There are two kinds of estimates in ECMT: work capacity
estimates and work requirement estimates. Usually, developers are unlikely to spend
eight work hours on one project a day. ECMT requires developers to estimate their
dedicated time for a project in one day, rather than using eight hours a day to calculate
work capacity. We calculate work capacity of a developer in a period by multiplying
workdays with the estimate of the dedicated time in one day. In ECMT, we assume that
development managers divide a project into small development tasks, and assign them
to developers. ECMT asks developers to estimate the dedicated time required for each

development task, which is the work requirement estimate.

4.2.1 Statistical estimation

In general estimation models, the estimator gives a single value as the estimate.
For instance, one estimator estimates a feature needs 10 work days. However, that does
not reflect how much confidence the estimator has. Usually, an estimator intends
something more: “T have 90 percent confidence that the feature will be done in 10 work
days, and 50 percent for 8 work days” to express the estimate. That is the stochastic way
of estimation.

However, it is unrealistic to gather the probability distribution of estimates from
each estimator, since the real distribution of a stochastic variable is difficult to get in
practice. Instead, it is better to assume the distribution type for estimates, and then ask
for some parameters from the estimator to figure out an approximate density function.

The work effort for a development task is associated with such factors as the
complexity of algorithm, input or output interface, data structure, and even work

environment, and each effort tends to add to others to contribute to the estimate. Thus,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33
the estimate can be considered as the sum of a number of random variables. According

to the Central Limit Theorem’, the distribution of work effort estimate is approximately
normal. The estimate for the work factor is similar. So, they are assumed normally
distributed in ECMT. These assumptions should be tested in future work.

Since two values are enough to fully describe a normal distribution, developers
are asked for two guesses with different confidence intervals in ECMT for each
estimation. The estimator will give two values of effective work days estimate for a task,
the first value is work days required that the estimator predicts with 50% confidence.
This value means that it has 50% probability that the estimator will achieve the task
before that time, and 50% probability after that time. That is also the mean of the
distribution. The second value is the estimate that the estimator predicts with 90%
confidence that the feature will be achieved before that time (we select 90% only
because it is a high confidence, others are also reasonable). It is considered the 90%
worst case. For the work factor, there are also two values required. The first is the work
factor that the estimator has 50% confidence, which is the average case. The other one
is the value for which 90% of the time the work factor would not be less than that. Work
factor estimation is related with a project. Since each project has a start date and
deadline, we can calculate the work capacity estimate by multiplying the work factor

estimate and the workdays between the project’s start date and deadline.

4.2.2 Updating estimates while monitoring progress

When a project is ongoing, work capacity and requirement estimation need to

be updated regularly to remain meaningful.

n
* The sum of the sample measurements, z X; , as n becomes large, would tend to possess a Normal distribution.

i=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34
The following terms are defined:

actual time spent (Tys): The number of effective work days spent on a task.

time still required (f

.,): The number of effective work days needed to finish the
task after having spent the actual time spent. This is a random variable estimated by

developers based on their best knowledge at that moment.

total estimate time (T,

et

): An estimate of the number of the effective work days
needed for a task. It satisfies the following formula,

T, =Tu+ T,

Thus, it equals time still required before any work on the task is started, and the
actual time spent after the feature is finished (time still required is 0). Because the time
still required is a random variable, the total estimate time is also a stochastic variable. In
this thesis, if not mentioned, the estimate for a task means its total estimate time.

Updating the work requirement estimate for a task in ECMT means to update

the time still required estimate. This application will prompt the estimator to input two
values: 50% confidence estimate and 90% worst-case estimate. The first time estimate
is similar. The only difference is that the actual time spent is 0.

Besides updating the estimate, ECMT also records the modification reason for

updating for later reference. We predefine four reasons for modification.

1. Update estimation. The estimation is accurate, we only want to update
it to show our awareness of the development progress.

2. Misunderstanding requirement. After developers have done some
work, they find they are not solving the required problem. It is often
due to inaccurate requirement specification or weak communication
between users and developers.

3. Requirement change. “Customers can never tell you exactly what

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35
they want.” [Beck 2000] In common business software development,

users often cannot tell what they really want.

4. Inaccurate estimation. Inexperienced developers (or short of domain
knowledge) do not have the estimation skills to make accurate
estimation at first. With the progress of development, they understand
the task better, and can make a better estimate.

If developers need to update an estimate by more than one reason, we suggest

updating the estimate more than once (one reason at a time).

In addition, developers will comment each modification in detail to explain
their estimation evolution.

Estimation modification reasons are useful to analyze developers’ estimation
skills. As feedback of previous estimation, developers can learn what the common
reason for personal inaccurate estimation is; what kinds of tasks are error-prone for
estimation. Hence, they can improve estimation skills.

ECMT does not track estimate changes of work factor (section 2.2).

4.2.3 Convergence of the series of estimate

A series of estimates for each task can be obtained by updating the estimate for
one task continually. By the end of development, the actual work time is available if
developers track their work time. Developers will find that the series of estimates tend
to converge to the actual work time as the project proceeds, in other words, the
difference between the estimate mean and the actual work time tends to converge to 0.
In addition, the difference between the 90% worst-case estimate and the mean of

estimate will converge at 0, too. The following figure illustrate the convergence:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Effective
Work Days
Estimate
Py,
ki) -~ .
— Actual time
3ok
2 -
] o
Work
0 12 3 4 on d Days
Praoject End y
j o > The 80% worst case estimate
p————— = 5> Mean of the estimate

Figure 4.1 Estimates convergence

In figure 4.1, each solid dot is the mean of an estimate. The dotted vertical line
reflects the 90% worst-case estimate. A dotted horizontal line end with the last solid dot
is the actual work time line. All above data are measured in effective work days.

This conclusion is reasonable due to two reasons.

Firstly, the estimate becomes more accurate with time spent working on the task,
since developers know more and more about the task. At the start of the project,
developers have to guess some issues about the task. However, as the project proceeds,
the uncertainties become smaller and thus the estimates will become more accurate.
Correspondingly, the estimator will develop more confidence in the estimate, so the
difference between the 90% worst case and the mean becomes smaller. At the end,
everything settles down, and the estimate is the same as the actual work time. Thus, the
estimate will converge to the actual time and the difference will converge to 0.

Secondly,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

~

Tt =Tats+f

e ' (section4.2.2)

The actual work time spent on a task is certain, and the proportion of the
estimates (time still required) will become smaller with the progress of the project. The
estimate error only exists in the time still required part, thus the fofal estimate time error
will become smaller.

This conclusion manifests the advantage of regular estimation: the ability to
realize the potential schedule slippage as early as possible. Each time developers update

the estimate, they use their best knowledge at that moment, so it is the most accurate

estimate they can make.

4.3 Combination of estimation and monitoring

There are some applications available to deal with estimating and monitoring
software development, but no one attempts to combine these two (the author can not
find one). ECMT attempts to use estimating and monitoring information assist personal

software development.

4.3.1 Estimating with historical data

With using ECMT, developers will accumulate some historical data, that is how
much work time is spent on a task. While making new estimates, it is helpful for
developers to refer to similar tasks they have completed in the past. The actual work
time for a former task (if not finished, the latest total estimate time, in this section, we
do not distinguish them) in historical data is a good hint for the total estimate time for
the current task. However, if a developer has to browse all the old similar tasks, and
compute the average work time manually, most developers will be reluctant to take

advantage of historical data. ECMT provides a feature to assist developers in choosing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38
similar tasks and computing the average work time. Assuming four tasks recorded are

similar to the current one and selected, and their actual work times are 4.5, 4.3, 4.0 and
4.7 effective work days. In addition, the developer has spent 1.4 effective work days on
the current task. Then this developer will get a suggestion that there should need (4.5 +
43 +4+4.7)/ 4 -1.4 =2.975 effective work days for the remaining work of the task, if

there is no special reason to change the estimate. (operation description in section 5.6)

4.3.2 Estimating with historical estimate series

In section 4.3.1, we take the actual work time of each task as reference for the
current estimation. However, we have the estimate series for each task, which includes
more information than the actual work time. One kind of important information is our
estimate error at a special development stage. For example, the estimate error (mean of
the estimate) of a task is 1.1 effective work days at the 54% development progress.
Such data can give some hints for the current estimation. If many similar tasks’ estimate
series show that a developer often make estimates which are about 3 effective work
days less than actual work time while these tasks are 60% finished, the developer might
consider increasing the current estimate. However, the developer is not forced to adjust
the estimate, since there are many possible reasons for estimation error, and the current
task is different from others. Moreover, it is possible that the developer has adjusted the
current estimate. Therefore, adjusting the estimate based on such information will

cause over-adjusting. Figure 4.2 illustrate this usage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

Task A
Effective work
days |
i A P— { ool
1} | | | 3
D | Work d
Start|Date 50% | Erlg %"g e tk days
l
Task B |
Effective work |
days
i N — .
U ¢
: -------------------------- l
ib/f' I
1}-! | | '
0 a o Work days
StartiDate 50% : Er:g%gte y
Task C |
Effactive work I
days e
mh i J_,
! | — PO i l
[N TR T *
1
1} | | |
| I Work davs
Start!Date 50% | Er:g%;gte oy
Current Task |
Effective work |
di\ys |
m -
i ; — |
| FUT— S
/ , |
|
1 |
1 i |)
D a, 0, work da S
StariiDate 50% | Dégg{{?’e y
Now

Figure 4.2 Estimating with historical estimate series

In figure 4.2, task A, B, C are similar tasks to the current one. Each Cartesian

coordinate system is an estimate series of a task. The x-coordinate is represented with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40
scope form 0 to 100%, because the length of each task’s work time is different, and we

need to convert the estimation date into that scope to compare all these estimates. The

long vertical line is the current development stage.

4.3.3 To-do list

Making a plan is a beneficial habit. The project plan for a developer should
include all the tasks to be done for the project, which can help to avoid forgetting
something important. The plan needs some effort. Since it does not contribute to the
work directly, many developers are reluctant to make plans. Based on the mean of the
estimate for tasks and their time logs, ECMT is able to generate a reasonable to-do list
for a project automatically.

For each task, it should have a start time and deadline. By defining N as work
days for the task, Dgcadiine as the date of deadline, Diaay as today’s date, Niglidays and
Nueekends as the days of weekends from now to deadline, we can calculate the work days
(not including weekends):

N = Daeadline = Dtoday = Nholidays = Nweckends

The remaining work time (T,) required for the task can be computed (the mean
of the stochastic variables is used here) by using time still required (from latest estimate)
to subtract the actual time spent after the latest estimate (obtained from the time log).

Then the amount of the work time for the task a day (T4ay) can be obtained by:

Tr
szzy =-]_Vv—

The time for task a day means that if a developer can spend such time on the task
every work day, the task will be achieved on schedule (With different confidence for

remaining work time T;, developers get deferent confidence).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

4.3.4 Project summary

To be aware of a project’s progress, the remaining work capacity and remaining
work requirement are essential. As a personal tool, ECMT only concentrates on one

developer’s tasks and summarize one developer’s assigned tasks.

4.3.4.1 Time spent summary

By reviewing the work that has been done on the project, developers can be
aware of how much work has been done. Because ECMT records the uninterrupted
time spent on tasks, it is easy to make such analysis. The total work time and the actual
work factor are selected to indicate the effort spent. The fotal work time reflects how
much work the developer has done. The actual work factor indicate how much time is
really spent on this project against the body present time.

The total work time (T) is the sum of all uninterrupted time spent on the task of
this project measured by effective work days during a period of work days (D), and the

actual work factor (W) is:

—
D

4.3.4.2 Capacity constraint

To know if development is on schedule, it is important to know how much work
remains besides the work that has been done. Following the definition in 2.3, the
remaining work in a project is called remaining working requirement (f). For each task,
we can calculate /by using its latest time still required estimate to subtract the actual
time spent after the latest estimation.

To get the total remaining coding requirement (F), all tasks’ remaining coding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

n
requirement estimate should be combined, F = Z f: - Since F is a line combination of

i=1

n
normal distributions, F is also normal distributed, where the mean isz 4, and the

i=l

n
variance is Yo7 .

i=1
Remaining coding capacity (N) reflects the available total uninterrupted work
time from now to the expected deadline. It is an estimate based on the work factor
estimate. Remaining coding capacity is the product of work days remaining (T) and
work factor (w). The work days remaining are counted from now to the deadline
excluding weekends, holidays, vacation days. Since the work factor is estimated as a

random variable that is normally distributed, and N =7 x w, thus N is also normally
distributed. The mean and variance are T x y,, and T, ”.

To reflect the development progress, we shall define a new quantity D(T),
“delta”, as follows,
D({T)=N-F
D (T) depends on the time T, the number of workdays in the coding phase.
The distribution of D(T) is also a normal distribution because N and F are

normal distributed. Considering the distribution of Remaining coding capacity and

Total remaining coding requirement, the mean for D(T) is Tx u,, - Z U , and the
i=1
. . 2 2 2 2
variance is T o "+ Zaf'_ .
i=1
With the distribution of D(T), we can obtain some interesting results.
The most interesting result is how much confidence the developer has that the

project can be done before the deadline. That is the probability that D(7) > 0, which can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43
be calculated from the distribution of D(T). If there is 80% probability that D(T)>0, that

is a good news. If there is 25% probability that D(T)>0, it is probable that the project
will be late, and something should be done. The developer can increase the work factor
estimate so to add more time on remaining work capacity. Basically, work factor is an
estimate based on the old data, but the developer can adjust it. If this task has a high
priority and there only remains a short period, the developer can make a higher estimate
for the work factor. Many people work more time before a deadline, so the higher work
factor estimate is reasonable. In a common situation, the work factor for a full time
developer is about 0.6 [Penny 2002]. It is rational if the work factor is 0.9 or even 1.2
considering working extra hours a day. If the scheduled release date can be negotiated,
postponing the deadline is also a choice.

The second result is that the developer can calculate if he or she needs the 80%
confidence, or 50% confidence to achieve the project, then how many workdays are
needed. That is to compute the T, given the possibility of D(T)>0, and the distribution

of D(T).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S Prototype implementation

The previous chapter described ECMT concepts in detail. A prototype was
implemented to explore and demonstrate the usefulness of ECMT concepts and Release
Planning. It also provides a basis for generating ideas for future work. In fact, some
concepts in ECMT were updated while this prototype was implemented. This chapter
provides details on ECMT features and how they are implemented.

Most features in chapter 4 have been implemented except “Estimating with

historical estimate series” (section 4.3.2).

5.1 Overview of ECMT

The main interface (figure 5.1) of ECMT is divided into two parts: the task
hierarchy pane at left and the tabbed panes at right. The task hierarchy is a tree structure
for organizing tasks and projects. The tabbed pane group at right includes five panes.
The summary pane shows the information for current projects. The track pane includes
a table that contains tasks that the user wants to track. The estimate for a task is shown
in the estimate pane. The detail pane shows the detailed information of a task or a
project, and the user can modify its information. The day report pane shows a day’s
work using graphical reports and a text summary. The panes, except the summary pane,
reflect the task or project selected in the task hierarchy.

The menu provides operations for organizing the tree and some controls for the
views in the right tabbed panes. We will describe them when introducing related

features.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

02 Time Log
¢ (& Retease1.2
9 (i features
@ ChangeWaor kfactorEsimation #98
@ UpdateStroctur sButamatedly 293
@ DayReposrtGraph 04
@ ToskDetailTable 2101
€ CombineEstimates #02
@ (i others
% Test #1103
Learning 2104
¢ (Q General
& surfinginternet #106
€ masting #07
€ LunchTime #108
€ (2 Release 1.1
¢ [Qreatures
€ TrackPane #109
2 TreeStructureOperation 4110
€2 TabbedPane #111

ChanéeWorkfactorEsimalion #98

UpdateStructureAutomatedly #39

DayReporGraph #100

HTaskDetailTable #101

|ComhineEstimates #102

test#103

Lsaming #104

Surfinginternet #106

meeting #107

LunchTime #108

TrackPane #109

TreeStructureOperation #110

TabbedDal

Figure 5.1 Estimate capture and Monitoring Tool

ECMT was implemented using the Java programming language (JDK 1.4) and
XML to store the information. Moreover, we used the probability package in the

OR—objects5 library to make normal distribution operations for estimation analysis.

5.2 Tree structure

ECMT organizes projects and tasks in the left pane with a tree structure. The
nodes with children represent projects. The leaf nodes are task nodes. Each node has an
identification number to avoid name confusion. We suggest users define a project node

according to a real release or project, but we do not enforce or check this in ECMT.

3 hitp://opsresearch.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://opsresearch.com

46
(i Time Log ———— root
9 [Release1.2
¢ (3 features

- § ChangeWork factorE simation #38
% UpdateStruclure Automatediy #99

projoct

DayReportGraph 3100
- TasDetaill able #101— Lask
- {3 athers
€ Tet 1103
§ Leaming #104
-3 General
& Surfinglntemet #106
2 meeting M07
€ LunchTime M08
¢ (2 Release 1.1
¢ [features
TrackPane #1109
%T&' husaOonn

Operations —

Figure 5.2 Organization of projects and tasks

ECMT provides the following operations to organize projects and tasks. All
operations can be accessed from the menu, and some operations can be accessed via
popup menu and toolbar.

1. Add project: add a non-leaf node in the tree hierarchy. The user is prompted

to input a descriptive name and a detailed description.

2. Add task: add a leaf node in the tree hierarchy. It also requires the user to

input a descriptive name and a detailed description.

3. Expand and collapse: if the current node is expanded, the collapse menu

item is available; otherwise, the expand menu item is available.

4. Expand Tree and Collapse Tree: only available at the menu for expanding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47
the whole tree or collapsing it (figure 5.3).

5. Delete project or task: delete the current node.

6. Rename: rename a node.

W@riimelog | _
© (3 Release1.2| @ TodayTime

CollapseTree

@ Learning #104
- € CombineEstimates #105
©- (I3 General
€ SurfingInternet 1106
& meeting #107
€2 LunchTime #108
¢ (& Release 1.1
¢ Qi features
@ TreeStructureOperation #109
€2 TabbedPane #1106

Figure 5.3 Expand or collapse tree

5.3 Details of a project or task

The detail pane is related to the node selected in the tree structure. Since the tree
structure includes two kinds of nodes, project nodes and task nodes, there are a project
detail pane and a task detail pane.

Figure 5.4 is the detail view of a project node. At top of this pane, a task list
shows brief information of all tasks in this project, which includes task name, task
description, time spent on the task, time still required, and the remaining workdays.
Below 1is the description for this project, the user can modify it by pressing the

“ChangeDescription” button. The “estimatable” check box is used to indicate that the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48
user needs to estimate a work factor for this project. If users mark the check the

checkbox, they should input the start date, deadline for this project, and an estimate for

the work factor.

Ao B S B
Tras project SOIRE DB

Figure 5.4 Detail of a project node

Figure 5.5 is the detail pane for a task node. The pane includes a table that
includes detailed time records when a developer works on the task. Usually, the data in
the table is generated by using the stopwatch for each task (section 5.4). By double
clicking the time items in the table, the item will become editable and users can modify
it. Also, users can insert or delete a record by buttons below the table. ECMT also

provides a more convenient way to modify time records with a graphical view (section

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

5.5). There is an editable pane for users to add a description for the task. At the end of

the pane, users can set if the task is “estimatable”. All development tasks should be

“estimatable”, and users are prompted to input the start date and deadline. If the task is

non-work-related, we can ignore this property safely.

arfifime.
2002.11.12.14.33.00.000

Sto
2002.11.12.18.08.00.000

2002.11,19,13.03.00.000

2002.11.18.15.21.00.000

2002.11.26,15.40.00.000

2002.11.26.16.43,00,000(

2003.05.13.15.24 27.000

2003.05.1315.24.28 593

2003.05.13.15.24.29.500

2003.05.13.15.24.30.390

20083.05.13.15.24.40.015

2003.05.13.15.24.42.265

2003.0513.15.24 45 718

2003.0513.15.24 46.109

2003.0513.15.24.43.703

2003051315 2450285

2003.05.13.15.24.43.703

2003.05.13.15.24.52.812

5.4 Tracking time

Figure 5.5 Detail of a task node

A stopwatch is a natural way to record time spent on an activity. ECMT gives

each task node a stopwatch in a track table, but only one can run at one time. There is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50
“play” button (P) for each task in the track table. When it is clicked, ECMT will record

the start time of the task, and the “play” button will change to a “stop” button ().
Meanwhile, the time passed column in the table starts to show the amount of time
elapsed. ECMT will keep tracking time until the “stop” button is clicked. In such a way,
time spent on tasks is recorded in detail. The other columns in the table show (figure 5.6,
5.7,5.8,5.9): Total Time (overall time spent on the task), Today Time (time spent today
on the task), and Last Time (latest time recorded on the task).

Since developers can have many tasks, ECMT usually only shows the tasks in a

project in the track table (figure 5.6).

TuReporifeast #789
Taaliet wl Eulibe MY

| [Chang Eximaton #15 §411
L tedhy ¥04 5

 IcayRenoisagn #1100

Lowcoing 64
S Combirmtatitnuiee S185
£ 5h Gionral
Sawforgntmerit #1806
Finbeing mMeT
535 Luneh Tioo 188
£ 1 rssane 14
® Qiiestuces
TroeSinseianaOparation ¥
g TabheFarm 211K
* eow

e vnst w0
[Y

Figure 5.6 Track table for a project

However, users can click the “ViewAll” button below the table to show all tasks

(figure 5.7).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ﬂ £ at et g arsd ok

stions

Bigopiatiaaph #o6
Gl Tanblhotsdkable $0
 Eoumns
Tas ML}
Lantidig #5
5 CombirsEstimaas 2196
& 3 Garorat
Suprfirsglenmrnnt W
Freetiog MK
LunehTime S188
& (G Retoase 1.4
 Lhtestures
% TrowSAr st a Opes st 0189
5 TabhadPaows 1510

« Tuesday, Moweiber 36, 2002

Lhaegnitisaklaci b siomation 25
st et ur e Sainia rodly W9

peftickinparation #104
1%

Figure 5.7 Track table for all tasks

Y Tenmme, 1 Todwmew 1 LaeTime.] T
I [Cnargednistating senitun #96 24111 (5. nor b)
- IndasegrgttureAulomatedy #g BI3E 0440 oo b 00
| |onReponopnh #1006 I 2350, ooa b LR
ankiatatlabin #1351 6119 f3go 609 LR
FEIE b}k g (21 a3k 200§
gamng #1044 oy el fiaete] [s3:0¢1 8 4 RN
mliEshmates #1085 S031 % Eee N 72545 b noe
[Surtengintornat 108 b = 09 b uon,
miting #1067 (13 000 b nag
snenTiong #1080 G904 any b 0:0.0}3
o0 opn b nae

Users can configure the table to hide some columns when they do not need all

the information. The menu “View” includes the columns items as check boxes, if they

are unchecked, they will not show in the table.

Tobbedt s #1118

- [Burmngintenet #1056

TreeStyuctue cOperation 203

pdeEt AL gy #93

fepodOraph #1504

wskletaiTatle #101

Sataing €104 .
RBINEEstmates BI05

Figure 5.8 Configuration of columns in track table

The items in the track table can be sorted by each column. Users click the

column heads to sort the table. There will be a symbol “<” (descending) or “>”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52
(ascending) to indicate that the table is sorted by this column.

‘ Mam 3 Time | Lastiime
CombineEstimates #1058 31 -0; ;0 7.26
DayRepodGraph #100 32:22.39 Atk 0.0,
ChangeWorkfactorEsimation #98 8:41:11 -0; N Q:0:
UpdateStruclureAutomatediy #99 L B32e :
TaskDetailTable #101 6:11:9 §

HLunchTime #108 0:0:14
(ITest#103 0:08 b
Sumfingtniernet #1 06 0:0:3
TabhedPane #110 0:0:1
meeting #1 07 0:0:0
|[TreeStructureOperation #109 0:0:0
Learning #104 N

Figure 5.9 Sort track table by “TotalTime”

A “TodoList” below the track table shows the planned work time for each task
today (section 4.3.2). ECMT arranges “TodoList” and the track table in the same pane,
because developers can easily know what they are supposed to do by viewing the

“TodoList” while tracking their activities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

- Name> tall il ‘ ¢ | TimePassed
ChangeworkfactorEgimali... 841 K1) :0:
UpdateStructureduloraate.,. 8328 0440 o:0:0 b 0:0:0
DayReporiGraph #100 32:22:39 2:35.0 000 b 0,0.0|
TaskDetailTable #101 6119 0:38:0 000 b 0:0:0
Test#103 0:0:8 0:0:0 008 b 0.0:0
{Leaming #104 0:0:0 0:0:0 o:0:0 b 0:.0.0
CombineEslimates #1048 50310 000 7.2648 P 000
Sutingintamat# 06 00 00 b 000
meeling #107 0 0:0:0 0:0:0) B 0.0.0
ILunchTime #108 0.0:14 0:0:0 0:0:0 0.00
TreeStructureOperation #... 0:0:0 0:00) 0:0:0 0.0:0
TabbedPane #110) 11 000

Figure 5.10 “TodoList”

5.5 Review

Graphical view of time records enable developers to understand there their time
goes visually. At the end of a workday, we suggest developers review their work in the
day and adjust the work time to reflect the real work.

The review pane includes three kinds of reviews of time records in a day. The

chronological day graphical view describes the work done in a workday.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CropfeporiGoapd 100 1000 A P00 PR onislenupted eme . o

g itpsuptad Baee B sy

R e e e

Figure 5.11 Chronological day graphical view

The chronological day graphical view also provides the way to modify the
records. The block between its top line and bottom line indicates the time spent on a
certain task. Dragging either of the lines will adjust the time log. Moreover, the popup
menu and the buttons provide the choice of adding a new record or deleting an existing

one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

UpdateStructureAutormatedly #399 1:32 PM to 2:21 PM, effective time : 44 1

Interrupt time 5 minutes

DiRepoitGraph #1100 22268 Pl to 310 PM; effective time 142 minutes

Brag o adjust

Figure 5.12 Operations in the chronological day graphical view

The time distribution graph (figure 5.12) illustrates the total time spent on each
task in a day and each one’s percentage. This graph visually displays developer’s

working time distribution and helps to understand where the time goes.

Effective Time{and their percentage) you spend on Nov 26, 2002
The total effective time you spend is 3:57.0

Pearcentage

notGraph #100

Tasks

Figure 5.13 Time distribution graphical view

In addition, a text summary gives a text format description for a day’s work,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

each task in a line.

Figure 5.14 Text summary for a day’s work

5.6 Estimation

The estimation pane provides features to update estimates and analyze their

estimates. Figure 5.15 shows how to update the estimates.

Figure 5.15 Updating the estimate

Users are required to make estimates for the task using units of effective work
days. The pane shows the last estimate (first line) and the time spent after last estimate
(second line) to assist users in understanding the development status. Users will make
new time still required estimate for the task. Moreover, users are expected to record the
modification reason and add a comment for later reference.

The “reference” button will invoke a reference window to use the historical

similar tasks’ data (section 4.3.1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.16 Reference window for estimation

A list in the window includes all tasks recorded by ECMT (which may be long
in general, however as a prototype tool, it is acceptable.). Each line of the list includes a
task name and its work time. After selecting similar features in the list, developers will
get a suggestion based on the selected tasks and the current one.

Another graphical view demonstrates the estimate series.

e ok Days

. Deadiine WorkDays
20030222

Figure 5.17 Estimate series

This estimate series graphical view illustrates a user’s estimate for the task from

the start date to the deadline (section 4.2.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

The red dots in the graphical view are the mean of each estimate. The blue
vertical line indicates the 90% to 10% confidence estimate (section 4.2.3).
A text summary for the estimate series provides the most detailed information at

the end of the estimate pane.

Figure 5.18 Estimation text summary

5.7 Summary pane

The summary pane provides an overall view of the current project. All items in

the pane are described in section 4.3.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.19 Summary pane

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 Evaluation

The author and his colleagues used ECMT to test its usefulness. The experience
helps to generate ideas for future work and refine the tool. This chapter discusses the
author’s experience and feedback of colleagues.

Since many features of ECMT were not available while developing it, and the

data format changing, the author only provides the data for the last developed feature.

6.1 Author’s experience while implementing a feature

The feature, “combining the remaining work capacity and the remaining work
requirement”, was developed at the end of this project. ECMT provides an overall view
of all the tasks by combining all the estimates as D (7) (section 4.3.3):

D{T=N-F

This feature calculates the amount of the confidence that all the tasks finish
before the deadline and the number of workdays required with 80% or 50% confidence.

The author recorded the work time spent on the task. Figure 6.1 is the detailed

time log.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

{1 2003.02.10.13.03.00.000|~
(2 2003.02.11.09.36.00.000 2003.02.11.13.23.00.000

3 2003.02.11.14.39.05.215 2003.02.11.17.55.00.000

4 2003.02.12.12.54.00.000 2003.02.12.17.47.03.253

5 2003.02.13.09.45.00.000 2003.02.13.13.22.00.000

6 2003.02.13.14.23.00.000 2003.02.13.16.41.00.000

7 2003.02.14.10.45.06.080 2003.02.14.13.04.20.352

8 2003.02.14.15.25.00.000 2003.02.14.17.06.00.000
19 2003.02.17.09.22.13.325 2003.02.17.12.26.12.235
10 2003.02.18.09.08.00.000 2003.02.18.12.52.03.258
11 2003.02.18.14.09.05.510 2003.02.18.17.33.05.326

12 2003.02.19.09.18.00.000 2003.02.19.12.35.00.000{

Figure 6.1 Detailed time log

Figure 6.2 is the to-do task generated by ECMT during the development.

Figure 6.2 To-do task generated

Figure 6.3 is the estimate graphical view for this task. The author made 3
estimates during the development. It is shown that the estimate is more and more

accurate as development proceeded.

- Work Days

Figure 6.3 Estimate series

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

It is difficult to estimate work time accurately for a new task at first. From figure
6.3, the first estimate is less than the actual work time by 35%. Moreover, the error
between 50% probability and 90% probability is also large, that is 29% in the first
estimate. However, the estimates tend to converge to the actual work time with the time
going. The differences between the 50% confidence estimate and the 90% worst-case

one tend to converge to 0. This agrees with the analysis in section 4.2.3.

6.2 Feedback of ECMT

The author asked his colleagues to try ECMT in a casual way for their
development or just as a general-purpose time tracking tool. Most feedback of ECMT is
positive. The time tracking feature is not annoying, though it needs some effort to
trigger the stopwatch. The continuous estimate updating is useful for understanding the
development status, because users make the estimate with the latest monitoring
information and the best knowledge of project at that moment. Reviewing the summary
pane, time tracking data and to-do list produces some progress pressure. Not every user
likes such pressure. Some users think pressure decreases morale when it shows their
low work performance is behind schedule. However, the author and some other users

feel that bad news motivates developers to higher work performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 Conclusions

7.1 Conclusions

Release Planning is a management framework for commercial software vendors
to estimate and track software releases. In the organizations applying Release Planning,
the development group will break the features down into appropriately sized parts and
assign them to developers. After that, developers measure the work effort of each
feature. Then development managers collect data from each developer, and summarize
it as the overall estimate for the release. If developers cannot make accurate estimates
or cannot follow the estimates, there will be schedule problems. Releasing planning
provides approaches at the organizational level to estimate and track software releases,
and these approaches are based on personal estimation and tracking work. ECMT
provides tool support for Release Planning at individual level. ECMT’s features are
divided into three categories. The tracking time feature records time spending on
hierarchical organized tasks, and provides graphical views of the time spending. The
estimation feature logs and analyzes the estimations of tasks as projects proceed. The
combination of estimation and tracking time provides up-to-date progress measurement

of projects.

ECMT provides features to monitor development progress as follows,
1. Tree hierarchy is appropriate for organizing projects and tasks.
2. Dedicated time is used to measure work effort.

3. Developers track their work time by clicking in track table, which also provides

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64
some overall information, for example, total work time, today’s work time, and so

on.
4. Developers can review their time log in detailed text-based and graphical reports.
ECMT provides features to assist developers to make better estimate as follows,

1. Dedicated time is used to measure work requirements.
2. Work factor is used to measure work capacity.
3. Developers can review and analyze estimates in detailed text and graphical reports.
ECMT combines monitoring and estimation information:

1. Developers can use historical data as reference to assist current estimation.

2. Summary for the current project reflects its development progress by comparing

the remaining work requirement and remaining work capacity.
3. Task to-do list devised by considering remaining work requirement and remaining

work days motivates developers to put more effort on important tasks.

7.2 Future directions

7.2.1 Experiments

We implemented a prototype application, ECMT, in this thesis. However, some
more experiments are required to validate that ECMT can achieve all the objectives it is
designed for. The following provides some concerns in future experiments.

1. One objective of ECMT is to improve developers’ estimation skills. Some
experiments are required to validate it.
2. The schedule pressure of using ECMT is the key to motivate developers to work

more productively. However, we need to investigate whether developers feel the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65
appropriate pressure when using ECMT, where they get the pressure (time reports,

project summary, or to-do list), and how they react to such pressure.

7.2.2 Summary at project-level based on individual records

ECMT is targeted at one developer working alone. However, a software project is
usually developed by a team, and the overall view of a project cannot be gained directly
by having only the estimate data of each individual developer. Therefore, a new facility
targeted at integrating the data from team members is desired.

A client-sever architecture will be appropriate for this feature. The client will
implement most features of ECMT, but store all the data in the server. Besides storing
data, the server can analyze the data at project-level including making a summary as
follows.

By analyzing all developers’ time logs and estimates, the new facility should
provide a project report to the manager. This report should include two parts. One is the
work summary, which is composed by the amount of work done and the average actual
work factor from the start date of the project until now. This part reflects the past
situation of the project. The other part analyzes the remaining work requirement and
remaining work capacity. The remaining work requirement is the combination of the
estimates of all developers, and the remaining work capacity is the combination of all
developers’ work capacities. Each estimate in ECMT is represented by a normal
distribution, so their combination is also a normal distribution. With the following
normal distribution,

D (T) = Remaining coding capacity —Total remaining coding requirement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66
(Where T is the remaining workdays to delivery date, remaining coding

capacity is the combination of all developers’ work capacities, and total remaining
coding requirement is the combination of all developers’ remaining work requirements),
the report will provide the amount of confidence that the project will finish before
expected delivery date, as well as the number of workdays required given a confidence.
This report is an extension of the personal summary in ECMT. Since it calculates the

data from all developers, it is able to reflect progress of whole project.

7.2.3 Using PDA to capture work away from desk

When developers work away from desk, for example, discussing with colleagues,
thinking with paper, it is hard to record that time with applications in a desktop or even
a laptop. However, a PDA (Personal Digital Assistant) is appropriate for these
situations, since a PDA is small enough to be carried anywhere. Usually, a PDA has a
small screen and limited computation capability, so it is not very suitable for analyzing
complex data or visually displaying the analyzing result. Therefore, it is better to use a
PDA to record the time spent data, but synchronize it with the desktop ECMT. In this

way, we would not miss any valuable data, and get the same benefits as in ECMT.

7.2.4 Extendable modules to support estimation approaches

There are many estimation approaches available (section 3.2). Some of them
can be integrated into ECMT, for example, function points and Delphi approaches. A
pluggable module can be designed for each estimation approach, which provides

related support for estimation approach and convert its result into effective work days.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

That is feasible because ECMT only needs the estimation results measured by effective

work days, but does not care which way users get these estimations by.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reference

Albrecht, A. J., J.R. Gaffney (1983). "Software function, source lines of code, and
development effort prediction: a software science validation." IEEE Trans. on
Softw. Eng. 9(6): 639-648.

Beck, K. (2000). eXtreme programming eXplained : embrace change. Reading, MA ;
Harlow, Addison-Wesley.

Blair, G. M. (1992). Personal time management for busy managers. Engineering
Management Journal. 2: 33-38.

Boehm, B. W. (1981). Software engineering economics. Englewood Cliffs, N.J.,
Prentice-Hall.

Boehm, B. W., Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K. Clark, Bert
Steece, A. Winsor Brown, Sunita Chulani, Chris Abts (2000). Software Cost
Estimation with Cocomo II, Prentice Hall PTR.

Brooks, F. P. (1995). The mythical man-month : essays on software engineering.
Reading, Mass., Addison-Wesley Pub. Co.

Brooks, F. P. (2003). "Three great challenges for half-century-old computer science."
Journal of the ACM (JACM) 50(1): 25-26.

Covey, S. R. (1990). The Seven habits of highly effective people : restoring the
character ethic. New York ; London, Fireside Book.

Covey, S. R., A. Roger Merrill, Rebecca R. Merrill (1996). First Things First: To Live,
to Love, to Learn, to Leave a Legacy, Fireside.

Davidson, J. P. (1999). The Complete Idiot's Guide to Managing Your Time, MacMillan

Publishing Company.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69
DeMarco, T. and T. R. Lister (1987). Peopleware : productive projects and teams. New

York, NY, Dorset House Pub. Co.

El Emam, K. S., B.; Madhavji, N.H. (1996). Implementing concepts from the Personal
Software Process in an industrial setting VO -. Software Process, 1996.
Proceedings., Fourth International Conference on the.

Ferguson, P. H., W.S.; Khajenoori, S.; Macke, S.; Matvya, A. (1997). "Results of
applying the Personal Software Process." Computer 30(0018-9162): 24-31.

H. Sackman, W. J. E., E. E. Grant (1968). "Exploratory experimental studies comparing
online and offline programming performance." Communications of the ACM
11(1): 3-11.

Heemstra, F. J. (1992). "Software cost estimation." Information and Software
Technology 34(10): 627-639.

Hughes, R. T. (1996). "Expert judgement as an estimating method." Information and
Software Technology 38(2): 67-75.

Humphrey, W. S. (1995). 4 discipline for software engineering. Reading, Mass.,
Addison-Wesley.

Humphrey, W. S. (1997). Introduction to the personal sofiware process. Reading, Mass.,
Addison-Wesley Pub.

Humphrey, W. S. (2000). "The personal software process: status and trends." IEEE
Software 17(0740-7459): 71-75.

Koch, R. (1999). The 80/20 Principle: The Secret to Success by Achieving More with
Less, Doubleday.

Ma, Z. C., J.S.; Smith-Daniels, D.E. (2000). Causes and solutions for schedule slippage.
a survey of software projects VO -. Performance, Computing, and

Communications Conference, 2000. IPCCC '00. Conference Proceeding of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70
IEEE International.

Penny, D. A. (2001). Software Release Planning, Managing at the Boundary between
Business Necessities and Software Development Realities. Toronto.

Penny, D. A. (2002). An Estimation-Based Management Framework for Enhancive
Maintenance in Commercial Software Products. Toronto.

van Genuchten, M. (1991). "Why is software late? An empirical study of reasons for
delay in software development.”" Software Engineering, IEEE Transactions on

17(0098-5589): 582-590.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

