
www.manaraa.com

AN ESTIMATE CAPTURE AND
MONITORING TOOL

A COMPUTER AIDED SOFTWARE ENGINEERING TOOL FOR
ESTIMATING AND MONITORING PERSONAL SOFTWARE

DEVELOPMENT PROGRESS

b y

Dong Shao

A thesis submitted in conformity with the requirements

for the degree of Master of Science

Graduate Department of Computer Science

University o f Toronto

© Copyright by Dong Shao 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-84201-0
Our file Notre reference
ISBN: 0-612-84201-0

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Abstract

An Estimate Capture and Monitoring Tool:

A Computer Aided Software Engineering Tool for Estimating and Monitoring

Personal Software Development Progress

Dong Shao

M aster o f Science 2003

Department o f Com puter Science

University o f Toronto

Release Planning is a management framework for com m ercial software vendors to

estimate and track software releases. We developed an Estimate Capture and M onitoring

Tool (ECMT), a computer aided software engineering tool for estimating and m onitoring

personal software development progress, to support the Release Planning m anagement

framework at an individual level.

The goal o f ECM T is to provide a tool aid for developers applying Release

Planning in order to determine if the Release Planning approach is practicable. EC M T’s

features are divided into three categories. The tracking time feature records tim e spent on

hierarchically organized tasks, and provides graphical views o f time spent. The estimation

feature logs and analyzes the estimations o f tasks as projects proceed. The combination o f

estimation and time tracking make ECMT distinct from related works by providing

up-to-date progress m easurement o f projects.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Acknowledgements

First o f all, I w ish to thank m y supervisor, Professor David A. Penny, for his valuable

guidance. David put much effort into my work, and his helpful suggestions improved it

significantly. I would also like to thank my second reader, Professor Dave Wortman. His

input has greatly benefited this thesis.

Many thanks to my friends in DCS for their generous support. Discussions with them

inspired me in many ways and suggestions from them are highly appreciated. Special

thanks go to my wife, Wei Zhang. The work in this thesis would not have been possible

without her input. She shared every bit o f my prosperous and hard time.

I also deeply appreciate my parents and sisters in China. They have always been there

for me and encourage me.

Finally, everyone in our department deserves my thankfulness. They provide the best

environment for research and study I have ever met.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table of Contents

1 Introduction...1

1.1 Estimation in ECMT... 3

1.2 Learning time management skills..4

1.3 Logging time and estimates... 5

1.4 Thesis overview...6

2 Release Planning... 7

2.1 Effective coder days ..7

2.2 Work fa c to r ... 8

2.3 Estimation... 8

2.4 Capacity constraint.. 9

2.5 Stochastic Capacity Constraint...9

2.6 Update release plan regularly.. 9

3 Background.. 11

3.1 Personal Software Process..11
3.1.1 Overview of PSP... 11
3.1.2 Time tracking in PSP ..12
3.1.3 PSP and ECMT... 13

3.2 Estimation... 14
3.2.1 Function Point Analysis... 14
3.2.2 COCOMO..16
3.2.3 D elphi.. 18

3.3 Personal time management... 19
3.3.1 The 80-20 rule... 20
3.3.2 Prioritize tasks... 20
3.3.3 Planning, monitoring and reviewing regularly.. 21
3.3.4 Personal time management in ECM T.. 21

3.4 Time tracking tools available.. 22
3.4.1 Time tracking too ls.. 22
3.4.2 Tracking time and billing...25
3.4.3 Monitoring employees... 26
3.4.4 Tracking software usage..27

4 Personal Software Development Estimate Capture and Monitor..29

4.1 Tracking time.. 30

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.1.1 Organization of projects and tasks... 30
4.1.2 Tracking tim e..30
4.1.3 Reviewing time records.. 31

4.2 Estimation...31
4.2.1 Statistical estimation..32
4.2.2 Updating estimates while monitoring progress..33
4.2.3 Convergence of the series of estimate...35

4.3 Combination o f estimation and monitoring..37
4.3.1 Estimating with historical data.. 37
4.3.2 Estimating with historical estimate series.. 38
4.3.3 To-do list..40
4.3.4 Project summary... 41

5 Prototype implementation...44

5.1 Overview o f ECMT... 44

5.2 Tree structure..45

5.3 Details o f a project or task.. 47

5.4 Tracking time...49

5.5 Review ..53

5.6 Estimation... 56

5.7 Summary pane ...58

6 Evaluation...60

6.1 Author's experience while implementing a feature... 60

6.2 Feedback o f ECM T .. 62

7 Conclusions.. 63

7.1 Conclusions.. 63

7.2 Future directions... 64
7.2.1 Experiments.. 64
7.2.2 Summary at project-level based on individual records.. 65
7.2.3 Using PDA to capture work away from desk.. 66
7.2.4 Extendable modules to support estimation approaches.. 66

Reference..68

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 Introduction

Penny [Penny 2001; Penny 2002] proposed Release Planning as a management

framework for commercial software vendors to estimate and track software releases. A

successful commercial software vendor produces new software releases that provide

features required by customers. Product management in the organization should be

aware o f the needs o f customers and business, and make release plans that include new

features to be delivered in the product by the release date. The software development

division in the organization should estimate the schedule, track development and

implement all features before the release date.

Inaccurate schedule estimation and schedule slippage are common problems in

many software projects [van Genuchten 1991; Ma 2000], and Release Planning also

needs to deal with these problems. In part, these problems are due to individual

software developers [Brooks 1995; Humphrey 1995], In Release Planning, a release

plan specifies features required in the current release. The development group will

break the features down into appropriately sized parts and assign them to developers

considering their skills. Developers measure the work effort of each feature. Then

development managers collect data from each developer, and summarize it as the

overall estimate for the release. However, some software developers are not willing or

able to make accurate schedule estimates. Furthermore, even if they make an accurate

initial estimate, they often fail to monitor their progress consistently. Without this

monitoring information, it is hard for developers to update estimates to reflect their

current development progress, thus their estimates and hence the overall project

estimate will become inaccurate.

l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2

Even when developers are able to make accurate estimates and corresponding

plans, sometimes they are behind schedule due to a lack o f work efficiency. There are

many causes for low work performance. For instance, a bad work environment, low

morale, outdated hardware and software tools, lack o f domain experience, and so on. A

lack o f personal time management accounts for some developers’ low work

performance. We characterize the absence of personal time management as

unproductive days, last minute rushes to meet a deadline, and infeasible plans. When a

schedule slips, developers should identify the reason. If the reason is a lack o f personal

time management, they need to improve their time management skills.

Continuous and quick feedback has been considered an effective treatment for

schedule slippage [Beck 2000], By taking measurement of development progress as

feedback, developers can determine whether they are on schedule or not. I f they find

their estimates are not true, they can modify them to be more accurate. If they are

behind schedule due to lack o f time management, the feedback will motivate them to

work more efficiently and improve their time management skills. In this way, feedback

helps to avoid personal schedule slippage.

Trying to use continuous and quick feedback to deal with personal inaccurate

estimation and schedule slippage in Release Planning, this thesis develops an Estimate

Capture and Monitoring Tool (ECMT), a computer aided software engineering tool for

estimating and monitoring personal software development progress, to support the

Release Planning management framework at an individual level. ECMT supports

estimating and monitoring during development by allowing developers to make

schedule estimates and record actual time spent on each task as feedback. What makes

ECMT unique from existing software tools is that it combines estimation and

monitoring. This combination provides up-to-date progress measurement o f projects,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3

hence developers can be aware o f their development status better.

1.1 Estimation in ECMT

While working on some intellectual work, for example, reading, writing,

designing, developing software, people can get into an ideal work state where they just

concentrate on the work totally, work fast and effectively, and the work goes smoothly

as if no effort is required. In that way, people are even unaware of the passage o f time.

Some psychologists call this state “flow”. DeMarco named it uninterrupted

time, [DeMarco and Lister 1987] since this state is easily interrupted, for example, by

phone calls, friends dropping by or something similar. The uninterrupted time for the

software developer is the actual work time. We call it dedicated time in this thesis, and

use it to measure the work requirement and work capacity (chapter 2).

There are two kinds of estimates in ECMT: work capacity estimates and work

requirement estimates. Usually, developers are unlikely to spend eight work hours on

one project a day. Because ECMT is project-oriented, we only consider the dedicated

time for each project, which influences the project’s schedule. ECMT requires

developers to estimate their dedicated time for a project in one day, rather than using

eight hours a day to calculate work capacity. We calculate work capacity o f a developer

in a period by multiplying workdays with the estimate o f the dedicated time in one day.

In ECMT, we assume that development managers divide a project into small

development tasks, and assign them to developers. ECMT asks developers to estimate

the dedicated time required for each development task. For example, a developer

estimates that a print function in an account application needs 40 hours. After

summarizing the dedicated time of each task, the developer will get his or her work

requirement estimate for the project. By comparing the work requirement estimate and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4

the work capacity estimate, the developer is able to know whether the current estimate

of work requirement is less than work capacity.

We use statistical estimates in ECMT rather than single value estimates. Single

value estimates are common in most situations, for example, a developer, Bob, predicts

that he needs 40 hours to develop an XML-parsing software component. However,

since estimation is predicting or guessing something, no one has 100% confidence that

the estimate is accurate. An estimator might intend to say, “I think this task has a 50%

probability o f being completed in 35 hours, and 50% probability not. However, I have

80% confidence that it will be achieved in 40 hours.” Therefore, in ECMT, we use

stochastic variables to make estimates, and assume that distributions o f variables are

Normal distributions (section 4.2.1). This estimation method is more complex than the

single value method, but it can answer some practical questions, such as how much

confidence a developer has to complete all tasks before the delivery date, how many

workdays are required for 80% confidence, and so on.

1.2 Learning time management skills

For software developers, time management skills mean accurate estimates,

using time in an efficient way, and achieving the project on schedule. The following are

the assumptions for improving developers’ time management skills used in the ECMT.

1. People tend to have consistent patterns for using time. As for spending time, one

inclines to have the sam e am ount o f w ork ing tim e day after day, w eek after w eek.

2. By recording the work time spent on tasks, developers can collect historical data to

know their work efficiency and how much time a development task will take. When

estimating new similar tasks, they can use these data to make better estimates.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5

3. Based on estimates, developers are able to devise detailed plans for projects. These

plans suggest the amount of work they should do in one certain day, and ensure that

they can accomplish their projects if they follow the plans strictly. In order to keep

estimates accurate and plans feasible, developers need to monitor their progress,

which means to track their work time and check time spent records against their

plans. Only when developers monitor their progress, can they know whether their

estimates are accurate and plans are feasible. Hence, they can update the estimates

and plans. On the other side, the time log feedback motivates developers to work

hard to follow the plans and estimates, as well as provides confidence in their ability

to deliver a project on schedule.

1.3 Logging time and estimates

Keeping a time log on paper without the help o f tools is inconvenient.

Developers have to write down each step o f an activity, and need good skills to

organize the data format for easy recording and reviewing. Some books[Humphrey

1997] provide the time log table, but it still takes time to learn how to use them.

Moreover, it is hard to enforce their usage. Updating estimates also needs some effort, it

requires developers to review the time log and write down new estimates. Updating

estimates is important, since if the estimates are not updated for a long period, they

become outdated.

After recording time and estimates, analyzing them requires much effort.

M anually sum m arizing the tim e spent on each task o r each day, com paring estimates

with the time log to decide whether the project is on schedule or not, and adjusting

estimates based on historical data may make many developers abandon the effort.

We developed ECMT to assist developers in solving such problems. The user is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6

only required to input estimates and record the start time and stop time of an activity.

ECMT will track work time and analyze estimates. In addition, it provides graphical

views and text summaries for analysis.

1.4 Thesis overview

This thesis is composed of six chapters:

Chapter 1: This first chapter introduces ECMT by providing some background, and by

explaining what it is, its motivation.

Chapter 2: This chapter gives an overview of the Release Planning approach.

Chapter 3: This chapter explores research relating to ECMT. In particular, personal

software process, software estimation, general time management, and some available

time tracking tools are examined.

Chapter 4: This chapter introduces the ECMT concept in details. Tracking time,

estimation, and combination o f estimation and monitoring features are designed in

ECMT for supporting Release Planning approach.

Chapter 5: This chapter provides details on ECMT features and how they are

implemented.

Chapter 6: This chapter discusses the author’s experience with ECMT and feedback of

colleagues who used this tool.

Chapter 7: The final chapter draws some conclusions, and discusses directions for

future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 Release Planning

This chapter gives an overview of the Release Planning methodology.

Release Planning is a management framework for commercial software vendors

to develop packaged software, proposed by Penny [Penny 2001; Penny 2002], Aimed at

small-size and middle-size fast-paced commercial software vendor organizations where

there is little time or management focus to enhance the process, Release Planning

provides a simple yet elegant approach to aid vendors in making better project plans

and tracking development. Release Planning concentrates on the coding phase in

software development. This thesis is based on Release Planning, but it concentrates on

the personal level.

A successful commercial software vendor produces new software releases that

provide the features required by customers. Product management in the organization

should be aware o f the needs of customers and make release plans that include new

features to be delivered in the product by the release date. The software development

division in this organization is supposed to implement the features by the release date.

One o f the goals of Release Planning is to improve the communication between the

product management and software development organizations.

2.1 Effective coder days

By definition, eight uninterrupted (section 1.1) hours compose one effective

work day. If it is for coding new features, we call it an effective coder day. Effective

coder days are used to measure the work requirement (section 2.3) and work capacity

(section 2.2) in Release Planning.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2 Work factor

Body-present time is the period of time during which a person is available in the

work place. It includes uninterrupted time and interrupted time, such as meeting,

chatting, having coffee, phone call time, and so on. In Release Planning, dedicated time

is the uninterrupted time for coding new features in some release. The Work factor

shows the ratio o f dedicated time for coding new features to body-present time.

, _ DedicatedTime
WorkFactor = ---------------------------

Body _ presentTime

Work factor is a helpful parameter for software developers. By collecting

time-spent data, developers can learn their work factor, and thus can predict the

available amount of dedicated time in a certain period. We call the amount o f dedicated

time for a project work capacity.

Assume that a developer, Tom, has work factor 0.45, and he is working on only

one project. If there are 40 workdays before the delivery date, then his work capacity is

0.45x40 = 18 effective coder days.

2.3 Estimation

A release plan specifies the features required in the current release. The

development group will break them down into appropriate sized parts and assign them

to developers considering their skills. Developers measure the work effort o f each

feature by dedicated time, which is called the work requirement. Then development

managers collect data from each team member, and summarize it as the overall estimate

for the release. Such an estimating process is not very complex, and most people do not

need extra training.

This bottom-up estimation approach pays much attention to personal difference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9

This difference is so large that one programmer may have ten times the performance

that of another [H. Sackman 1968]. It is quite possible to get an inaccurate estimation

when ignoring this difference.

2.4 Capacity constraint

After completing a project, work requirement must have been equal to work

capacity, since we measure them both by the effective coder days spent on the project. It

is a de facto result. However, during the course o f the project, we can only make

estimates for work requirement and work capacity. I f work requirement is less than

work capacity, we probably have enough human resources for this release. I f not, we

are at risk o f schedule slippage.

2.5 Stochastic Capacity Constraint

The precise capacity constraint is not suitable for estimating in advance.

Release Planning uses stochastic variables to make estimates rather than using single

value estimation. We will discuss it in chapter 4 in detail.

2.6 Update release plan regularly

If we make estimates and plans only at the beginning of a project but do not

update them, they will no longer reflect development progress after a period. From a

single developer’s view, updating estimates means re-estimating the remaining work,

and the work factor. From a project’s view, it needs to summarize data from developers

and compare total remaining coding capacity with the total remaining coding

requirement. Through updating the estimates, the team is made aware o f its

development progress, and hence can take appropriate actions to avoid schedule

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

slippage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3 Background

This chapter explores research relating to ECMT. In particular, personal

software process, software estimation, general time management, and some available

time tracking tools are examined.

3.1 Personal Software Process

In determining whether process improvement principles work for individual

software professionals [Humphrey 2000], Humphrey developed the Personal Software

Process (PSP) '[Humphrey 1995; Humphrey 1997]. PSP attempts to provide a defined,

planned, and measured way for software engineers to improve the quality, predictability,

and productivity of their creative engineering work.

3.1.1 Overview of PSP

Software process is the sequence o f steps required to develop or maintain

software [Humphrey 1995], Unlike most process improvement methods that address

the organizational level, e.g. Capability Maturity Model (CMM) for software,

Humphrey’s PSP focuses on the personal level. PSP assumes that a software developer

can achieve better performance by applying some reasonable software engineering

principles. These principles are the measurements of personal performance. Taking

these measurements as feedback, software developers will improve their performance.

Humphrey introduces these principles into PSP through a gradual process. Figure 3.1

shows the progression o f PSP.

li

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

12

PSP2

PS PI

PSFO
Current Process
Time Recording

Defect Recording
Detect Type Standard

Cyclic Development

PSP3

P S P l.t

PSP2.1

PSP0.1
Coding Standard

Size Measurement
Process Improvement Proposal

Figure 3.1 The PSP process development

PSP is a practical methodology to help individual software professionals

become more effective. Some researchers [El Emam 1996; Ferguson 1997] have found

positive results for software defect quality, size estimates, and planning when applying

PSP.

3.1.2 Time tracking in PSP

Humphrey supports time tracking in PSP as well as providing detailed steps to

create the time log in his book, “Introduction to the personal software

/?roce.«”[Humphrey 1997],

The book proposes a standard time recording log, as shown in Table 3.1.

1 PSP and Personal Software Process are tradem arks o f Carnegie M ellon University

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

Table 3.1 TIME RECORDING LOG

Student Date
Instructor Class

Date Start Stop Interruption
Time

Delta
Time

Activity Comments C

The form’s head includes name, recording date, instructor, and class (this form

is for students). Each time period is entered on one line of the form as follows:

• Date. The date for a certain activity (for example, a task).

• Start. The starting time of the activity.

• Stop. The end time.

• Interruption. Any time lost due to interruptions.

• Delta time. The time spent on the activity, in minutes, from the starting time

to the end time, subtracting the interruption time.

• Activity. A descriptive name for the activity.

• Comments. A more complete note on the activity.

• C (Completed). Check this column if the activity is complete.

It is a well-defined recording form for logging activities. However, there are

some suggestions in the book for using the form: keep the engineering notebook

(including the forms) with you at all times; use a stopwatch to track interruptions;

summarize the time promptly (in another form). Maybe some developers like this way,

but not everyone can stand so much effort, especially over a long period.

3.1.3 PSP and ECMT

ECMT uses time tracking technique in PSP to monitor the development

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

14

progress. However, since ECMT is a computer aided software engineering tool, users

can avoid writing down all time tracking records and summarize them manually. If only

considering the time tracking feature in ECMT, we can take ECMT as a PSP tool.

3.2 Estimation

Brooks believes that software estimation is one o f the “three great challenges

for half-century-old computer science”. Even though there have been many advances

on theory and practice, there is still no method to make software engineering as

predictable as civil or electrical engineering [Brooks 2003].

In most estimation models, there is a relation between cost and effort

(person-months needed), for example, one person-month is taken as $5000; thus, given

effort estimates in person-months, it is possible to translate it to cost estimate. In this

thesis, we consider effort and cost estimation synonymous.

The following are some popular estimation approaches.

3.2.1 Function Point Analysis

Albrecht developed Function Point Analysis (FPA) in the 1970s [Albrecht

1983], Instead o f using “lines of code” as a measure o f software size, it measures

systems from a functional perspective. FPA assumes that the number o f different data

structures is an accurate indicator of software size. Therefore, it is more suitable for

business applications, where data structures play the dominant role in development, as

opposed to applications emphasiz algorithms (e.g., compilers).

There are five major components considered in FPA: the number o f input types

(I), the number o f output types (O), the number of inquiry types (E), the number of

logical internal files (E), and the number o f interfaces (F). After we classify each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15

component in one o f the above five major component catalogs, we assign it a rank of

low, average, or high with some predefined rules (refer to the IFPUG Function Point

Counting Practices Manual). Then FPA assigns a weight to each component with the

rank shown in the following table:

Table 3.2 Counting rules for function points

Complexity Rating Input (I) Output (0) Inquiry (E) Logical
internal (L)

Interfaces
(F)

Low 3 4 3 7 5
Average 4 5 4 10 7
High 6 7 6 15 10

From the data in the above table, the number of (unadjusted) function points,

UFP, can be calculated. It is a weighted sum:

UFP = 3 x Low (I) + 4 x Average (I) + 6 x High (I)

+ 4 x Low (O) + 5 x Average (O) + 7 x High (O)

+ 3 x Low (E) + 4 x Average (E) + 6 x High (E)

+ 7 x Low (L) + 10 x Average (L) + 15 x High (L)

+ 5 x Low (F) + 7 x Average (F) + 10 x High (F)

The final Function Point Count is obtained by multiplying this UFP by an

adjustment factor referred to a VAF (value adjustment factor):

FP = VAF x UFP

The value adjustment factor reflects 14 general system characteristics (GSCs,

details of how to evaluate them are available in IFPUG3 Function Point Counting

Practices Manual) that influence development effort o f the application counted. The

degree o f influence for each of these characteristics ranges on a scale of zero (no

influence) to five (strong influence). The total degree o f influence (DI) is the sum of

2 The International Function Point U sers’ Group (IFPUG), http://www.ifpug.org
3 The International Function Point U sers’ Group (IFPUG), http://www.ifpug.org

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.ifpug.org
http://www.ifpug.org

www.manaraa.com

16

scores for all characteristics. Then, the IFPUG Value Adjustment Factor (VAF) will be

defined as:

VAF = 0 .6 5 + D I / 100

The Function Point method addresses software size estimate. Some researchers

have analyzed much data to get information how many function points can be coded in

an average person-month. Thus the FPA can be converted to estimate effort and cost.

The relation between function points and lines of code in a certain programming

language is also available. This makes it possible to use FPA with other estimation

methods.

ECMT does not use FPA directly. ECMT measures work requirement by

dedicated time. However, in practice, users can convert function points estimates to

dedicated time estimates, hence FPA can work together with ECMT

3.2.2 COCOMO

Bohem proposed the COCOMO (Constructive COst MOdel) cost estimation

model in 1981 [Boehm 1981], In basic COCOMO, the following effort equation shows

the relation between effort and software size:

E = bK LO C

Where b and c are constants that depend on the kind of project considered,

KLOC (thousands of source lines of code) represents software size, and E is effort

measured in person-month.

In COCOMO, a project is classified into 3 categories:

• Organic. The project is developed using stable techniques, and developers

have much experience on similar projects. Usually, the product is not very

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17

large, and needs little innovation. Example: An accounting system.

• Embedded. There are tight and inflexible constraints for this kind of project.

A great deal of innovation is required. Example: Air traffic control,

embedded weapon systems.

• Semidetached. The project’s characteristics are intermediate between

organic and embedded.

The required effort (measured in person-month) is obtained from the following

formulas:

Organic: E = 2.4 x (.KLOC)105

Semidetached: E = 3.0 x (K L O C f n

Embedded: E = 3.6 x (.KLOC) ‘20

Basic COCOMO is suitable for early, rough estimates, since it is based on a

simple and crude classification o f projects into only three types. In the book Software

Engineering Economics[Boehm 1981], there are two more complex models described:

Intermediate Model and Detailed Model. The intermediate model uses an Effort

Adjustment Factor (EAF) and different coefficients for the effort equation:

Organic: E = EAF x 3.2 x (KLOC)105

Semidetached: E = EAF x 3.0 x (K L O C f12

Embedded: E = EAF x 2.8 x (K L O C f20

The EAF is determined by 15 Cost Drivers, such as Product Complexity,

Programmer Capacity, Applications Experience and "Use of Software Tools”, all of

which affect productivity. Therefore, since the intermediate model describes projects

more accurately, it is supposed to produce better estimations.

The detailed model differs from the intermediate model for it is phase

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

dependent. It defines six phases: Requirements, Project Design, Detailed Design, Code

and Unit Test, Integrate and Test, and Maintenance. For each phase, there is a different

effort multiplier for each cost driver. By considering situations in different development

phases, Boehm argues that the total estimate will be more accurate.

COCOMO 2 is a revision of the early COCOMO model [Boehm 2000]. There

are two models in COCOMO 2: the Early Design model and the Post-Architecture

model.

A software project uses Early Design model at early stages where little

information is known. The Post-Architecture model is a more detailed estimation

model that is used after a software architecture has been developed. Both have the

following basic effort equation:

E = 2.45 x EAF x(K LO C)c

Where, EAF is the effort adjustment factor. EAF is a product of seven effort

multipliers in the early design model, while it is the product o f seventeen effort

multipliers in the post-architecture model (details in [Boehm 2000]).

COCOMO provides the relationship between work effort and software size. If

we know the software size in LOC, we can use COCOMO to make a rough estimate in

dedicated time. It is especially helpful when we have no ECMT historical data, but have

such data in LOC. However, it is not clear if COCOMO applies to individual feature

estimates or to entire project only.

3.2.3 Delphi

Although major research work in software cost estimation field has been

devoted to algorithmic models, expert judgment [Hughes 1996] is a commonly used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

19

estimation method in practice. A Dutch study carried out by [Heemstra 1992] revealed

that 62% of estimators and organizations use the intuition technique. The wideband

Delphi approach for software estimation [Boehm 1981] is a structured technique of

expert judgment. It is a better approach than many algorithmic models when there is no

historical data. Experienced experts with a good understanding of the project are crucial

in applying the Delphi approach. This approach has the following steps:

1. Experts are issued the specification and an estimation form by the coordinator.

2. A group meeting is held to discuss the project and estimation issues.

3. Each expert independently completes the estimation form.

4. Estimates are returned indicating the median estimate and the expert’s personal
estimate.

5. Another group meeting is held to discuss the results.

6. Experts prepare a revised independent estimate.

7. Steps 3-6 are repeated until a consensus is reached.

Delphi can make accurate estimation in many situations, but often it will require

a long time to achieve consensus amongst all the experts.

ECMT is a personal tool. If a developer takes a crucial task that has a wide

impact on the progress of the overall project, the team leader should consider using the

Delphi approach to help the developer to make an accurate estimate. Future version of

ECMT could provide direct support for this approach.

3.3 Personal time management

Lack of good personal time management will result in unproductive days, last

minute rushes to meet a deadline, infeasible plans, ignoring long-term objectives, and

so on. Personal time management is a group of common sense strategies, some

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

reasonable suggestions for managing time, for instance, planning tasks with priority,

using to-do lists, and making good use o f an agenda [Covey 1990; Covey 1996;

Davidson 1999]. There is little theory or experiment research on these approaches,

however we can learn something by studying them.

3.3.1 The 80-20 rule

Around 1900, Italian economist Vilfredo Pareto, in his study o f the patterns of

wealth and income, observed that the distribution of wealth was predictably unbalanced.

About 80% of the wealth in most countries was controlled by a consistent minority,

about 20% of the population. This pattern is summarized as “80:20 rule” or “Pareto’s

Principle”. In 1998, Richard Koch [Koch 1999] observed that the imbalance applies to

many aspects in modem life, such as stocks, company sales, and even web site

performance. For time management, this mle argues that, for common situations, 20

percent o f the total time gives out 80 percent of results and the remaining 80 percent of

time only generates 20 percent o f the output. 20 or 80 percent is not extremely accurate

when used in this way. The principle gives a hint for time management by showing that

most of the results come from a minority of time. If we can manage time appropriately,

and make as much of our time “20 percent” time, it is possible to achieve greater results

with the same amount o f time. That means we can be more productive if we know how

to use time efficiently.

3.3.2 Prioritize tasks

Prioritizing tasks is an important aspect in personal time management. Each

person has his or her goals, long term or short term. Usually, we can decompose a goal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21

into several tasks. The task list is a list o f all the tasks to be carried in a day or a period.

However simply writing down such a list and following tasks one by one is not enough.

Since in that way, tasks at the top of the list often have the best chance o f being done

first, no matter whether they are urgent or not.

That is why we need prioritize tasks. By giving important tasks higher priority

and sorting tasks by their priorities, we can put more concentration on important tasks.

3.3.3 Planning, monitoring and reviewing regularly

“Since personal time management is a management process just like any other,

it must be planned, monitored and regularly reviewed.” [Blair 1992] Blair summarized

time management skills from a broader view.

Making a prioritized task list helps one to concentrate on important tasks,

therefore maximizing the use of time. Monitoring time by recording all activities (not

only tasks in the list) will reveal where time is spent. Reviewing a time log is important.

This is where we compare the time log with the original plan. If it agrees with the plan,

we will have confidence that everything is under control. Otherwise, it will motivate us

to follow the plan more strictly or modify the infeasible plan.

3.3.4 Personal time management in ECMT

ECMT attempts to improve developers’ work performance by applying some

personal time management skills. A to-do list based on estimates and a time log helps

developers to make daily plans. This to-do list can be seen as the tasks with high priority.

Moreover, ECMT allows developers to monitor each development task, as well as

provides text and graphical summaries for users to review their work easily.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22

3.4 Time tracking tools available

There are many time tracking tools available to fit different requirements.

According to their purposes and usage, time tracking tools can be categorized into four

classes:

• Time tracking tools: mainly for tracking time.

• Tracking time and billing: mainly for billing.

• Monitoring employees: working as a spy program to monitor employees’ use of

computers.

• Tracking software usage: recording work time by collecting time spent on certain

software applications.

3.4.1 Time tracking tools

Tools in this category provide general time tracking features. Users manage

their tasks and track time as a stopwatch (click on an icon to start and stop one timer).

However, these tools are not intended for any particular purpose. ECMT provides

similar tracking time features.

3.4.1.1 Time Tiger

(httn://www.indigo 1 .com/timetiger/learnabout.asp)

Time Tiger takes simplifying the entry process as a design objective. Figure 3.2

shows its interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.indigo

www.manaraa.com

23

(Nothing)

Arbiter c o d e dev

H i R ev iew m anuais

T earn m eetings

Figure 3.2 Time Tiger

Time Tiger provides a small task list that includes user-defined tasks in a day.

The user clicks on the current activity item, and Time Tiger logs the time. Time Tiger

provides a report wizard that assists the user in analyzing the time logs.

3.4.1.2 Time Track

fhttn://timetrack. sourceforge.net/)

Time Track is a simple Personal Software Process tool to help users track their

time on projects and activities. Time is input through a Java Swing GUI and recorded in

an XML file. Users can also use some other tools to manipulate the XML file to

generate other desired report.

Cuirt.'iil I a s k

End Current & Start New TaskDate 8/27/01 1:31 AM Duration

Go On Break

Design

T racker

-Woi k l listory (Double click on an entry to resum e)

Start Date Duration Activity Project T ask
8/27/01 12:05 AM 41 Design MockObjects Adding new Dy...
8/26/01 10:00 PM 45 Development Merlot i
'8/26/01 9:37 PM 22 Email j
8/26/01 9:00 PM 37 Documentation TimeTrack R eadm e for 1.0... |
8/26/01 8:00 PM 60 Development TimeTrack R epackaged fo... |

Figure 3.3 Time Tracker

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24

3.4.1.3 GnoTime (formerly known as GTT) - The Gnome Time Tracker

(http ://gttr. sourceforge. net/)

GnoTime provides many features more than a simple stopwatch. The project

webpage describes the tool as such: “The Gnome Time Tracker is a desktop utility for

tracking the amount of time spent on projects, and generating configurable reports and

invoices based on that time.” By organizing projects into a tree structure, some projects

can be the sub-projects o f others. The tree can be expanded or collapsed to simplify

viewing (figure 3.4). Besides the basic features, GnoTime allows users to do simple

project planning, such as making to-do lists and estimating the amount o f time needed

to complete the project, but it does not support continuously updating estimate

information. Moreover, this application provides basic billing support.

GnoTime is the most similar tool to ECMT. However, their purposes are

different. ECMT combines the estimation and tracking time functions to assist

developers to make better estimates and avoid schedule slippage. GnoTime provides

similar functions, but does not combine them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25

ii * *• ..* :.......J& JQ l & l

jle Edit Settings R eports Tjmer Help

D : <>j B St [B
New Journal Properties Timer Help Quit

Total j Today 1 Title Description

34 :58 :50 0 1 :03:1Q E3 GnoTime p o rt and maintain
00 :00 :15 - I- bug intrval edit journal

- - 3- completed finished projects
00 :35 :37 - - cut tree p aste is buggy, only to p is p asted
01 :16 :15 - - autosave autosave d a ta peridocially
11 :44:41 - - backup files add backup support
00 :14 :39 - - g tt-sh o w buq bug in pi-sum print
0 1 :52:01 - -d i r gnotim e.d directory
04 :51 :19 - - doubleclick doubleclick to s ta r t projects
01:18:01 - - filesave fix save-to-file
02 :42 :35 - - time s tep w atch fo r too-large time s tep
3 1 :32:30 - [3 todo export ex p o rt todo-list in ascii or rep o rt
0 1 :00:00 - - collapse save collapse-expand s ta te
0 1 :46:50 - - command command line callbacks
06 :38 :27 - - idle credit dialog bo x to credit idle time
00:13 :32 - -m e n u add edit entry to menu
00:26 :20 - - new proiect ge' new proiect g e ts focus

p1 03 .1 0 l*̂ 1) enable c tree-gnom e2 p o rt

Figure 3.4 Gno Time

3.4.2 Tracking time and billing

Tools in this category are mainly for billing. For example, a consulting company

uses such tools to track the time spent on its client, and calculates the fee according to

the time log.

3.4.2.1 Time Track

(http://www.trinfinitysoftware.com/timetrack.shtml)

Time Track is a time logging application originally designed “for consultants

and freelancers to minimize time spent logging hours and to enhance billing accuracy.”

This application provides billing functions besides common time tracking features. The

following figure shows the interface for calculating the charge based on the time

recorded.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.trinfinitysoftware.com/timetrack.shtml

www.manaraa.com

26

0 0 Rate Calculator

F ile . P r o j e c t X ' S 1

T o t a l T im e : 0 0 :3 1 :5 3

R a te : *1 4 5 .o d | P e r H o u r

T o t a l C h a r g e : $ 2 3 .9 1

^■Calculate")

Figure 3.5 Time Track

3.4.3 Monitoring employees

Tools in this category are intended to monitor employees’ work by tracking their

time spent on computers.

3.4.3.1 TimeFix - Employee Time Tracking Software

('http ://timefix. aklabs. com/)

“TimeFix is an effective multi-user software solution for automatic tracking and

logging of time you and your colleagues spend working with various software

applications.” TimeFix can work as a personal time tracking software, but it is mainly

for monitoring what application and its time that employees have used. After installing

a small monitoring program on each employee’s PC, the manager can see time reports

for software usage on all computers.

3.4.3.2 Time Hunter

thttp://www. structurise.com/TimeHunter/index.htm)

Time hunter helps business managers to keep track of how their employees

spend their time on computers. It logs applications, documents, and internet sites

employees have used or visited. At the end o f the workday, it sends a log to the manager.

Time Hunter also provides a graphical view of time data for the manager.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www

www.manaraa.com

27

3.4.4 Tracking software usage

When most o f a developers’ work can be done using computer applications, the

running time for each application is an indication of work time. Some applications use

this indication to track users’ work time.

3.4.4.1 Smart Work Time Tracker

(http://tracker.aklabs.com/)

Some people have to use special software applications to do their main work,

for example, using Visual C++ to code, Microsoft Word to write documents and so on.

Smart Work Time Tracker (SWTT) provides the ability to log the amount o f time spent

on different software automatically. In such way, SWTT collects the data concerning

working time consumption and distribution. SWTT is sophisticated enough to judge

whether a user is working or not. Suppose that a user runs an application, and then goes

to lunch. After a while, SWTT on longer detects any activity on the keyboard or mouse,

it considers the user is away and thus will stop tracking time. However, if some work is

done without using any software, SWTT will not log that work time nor add to SWTT

time log.

It is better than other tools if users’ work is totally based on software running on

one computer, since users even do not need to act on a stopwatch. However, some

software development requires developers to think, work with paper, or on different

systems, and then SWTT is not able to count this work time in. Moreover, SWTT

cannot distinguish tasks using the same application (e.g., coding versus debugging

when using Visual C++).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://tracker.aklabs.com/

www.manaraa.com

28

'■> Smart WorkTime Tracker 1.213 Pro -- [C:WPROJ\home]

View Reports Config Help

Action

Project files

Application base

VoikTime T racker

autogroups,
f a selected

element are displayed here.

;‘t P File and archive manager

m Borland Delphi (swttmsc)

| S Borland Delphi (SmartWTT)

asprotect

Windows Help

HjUMSDN Library

Borland Delphi (Projectl)

I S Borland Delphi (uEIBuilder)

m Borland Delphi (abeView)
I S Borland Delphi (SWTTHook)
| S Microsoft Visual C++ (SWTTH...

m Borland Delphi (swttloader)

File and archive manager [(pas)]

I S Borland Delphi (LogRepair)
Blr.1 P r>rl antt Halrs!^! rPmior+Ot____________\

X G 11)

Status

MSDN Library j Quick info [To-do list [

Activity tim e

Total

Today

Yesterday

Average

First use

Last use

1:30:53

0:04:23

0:00:00

0:00:01

24.06.01 18:50

27.07.01 21:44

Records

Build time

1G6
171ms

Log (last 2 4 h):

I Start I Application Duration
16:43 MSDN Library 0:01:57

I 15:44 MSDN Library 0:00:01
I 15:43 MSDN Library 0:00:04
j 15:42 MSDN Library 0:00:05

15:42 MSDN Library 0:00:01
I 15:42 MSDN Library 0:00:03
I 15:41 MSDN Library 0:00:04
| 15:33
1

MSDN Library
ucnhi i

0:00:07
n n n r u

Figure 3.6 Smart WorkTime Tracker

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4 Personal Software Development Estimate

Capture and Monitor

This chapter describes the key features required for supporting Release

Planning at the individual level. ECMT’s features are divided into three categories. The

tracking time feature records time spent on hierarchical organized tasks, and provides

graphical views of the time spent. The estimation feature logs and analyzes the

estimations o f tasks as projects proceed. The combination o f estimation and tracking

time provides up-to-date progress measurement of projects.

Before we describe ECMT, some terms are explained here.

Task: A task is a piece of work that must be done. As for software development,

we often take a feature as a task. We can estimate the work time for a task and monitor

the progress of it, which means tracking the work time on it. Developers should

estimate all development tasks. For non-work-related tasks, for example phone time

and chat time, developers can ignore the estimation, but still track their time.

Project: A project is a combination of tasks and/or some other projects, and it

can be planned over a period of time. A project in ECMT can be considered to include

all the tasks assigned to one developer in a software release (which is often developed

by a development team.). The work requirement estimate o f a project is the sum of all

tasks in the project. As a reflection of the actual project, the project in this system has a

start date and a deadline. We can estimate the development work capacity (section 2.2)

between them.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

30

4.1 Tracking time

Tracking time records where developers’ time goes. These records assist

developers to understand their time spending habits and are used to track the accuracy

of estimations.

4.1.1 Organization of projects and tasks

A tree structure is convenient to manage hierarchically structured information.

Since developers may have many tasks which are accessed often, a tree structure is

selected to organize all the tasks in ECMT. Every task is represented by a leaf node in

the tree, which is called a task node. Related tasks are grouped under a non-leaf node

that is given a name to describe the reason why they are in the same group. Such

non-leaf nodes are project nodes, and a project node can contain some other project

nodes besides the task nodes. With this structure, the user can easily access any project

or task for tracking or some other operations, for example, renaming, changing

description, deleting, adding new projects or tasks, and so on.

4.1.2 Tracking time

4.1.2.1 Stopwatch to record dedicated time

Dedicated time is the actual work time (section 1.1), and has an effect on the

schedule. ECMT records dedicated time rather than body-present time (section 2.2).

A design goal of ECMT is to make it easy for users to track time. A stopwatch is

the common way to record a period of time spent on an activity. Each task in ECMT has

a stopwatch to record the time for it. At the start time and stop time, users trigger the

stopwatch, and ECMT will log all records for each task (operation descriptions in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31

section 5.4).

4.1.2.2 Interrupted time

The “uninterrupted time” (section 1.1) is easy to be interrupted by phone calls or

friends dropping by. Although users can track phone time or chatting time as tasks,

many people may not like to use a stopwatch before picking up the phone, especially if

such time is too short or the user does not want to collect such non-work-related data.

However, if such time is recorded in the work time, the time log will be inaccurate. In

ECMT, the interrupted time is used to reflect such time. The user can add “interrupted

time” for a time record to show there is a period that is not productive time. ECMT will

subtract it from the total work time.

4.1.3 Reviewing time records

Reviewing time records is a way we get development feedback. Different views

are provided to help developers understand the tracking time data. Graphical views

provide an easy-to-understand way to know where developers spend time. There are

two kinds o f graphical views in ECMT. The chronological day graphical view describes

the work done in a workday. The time distribution graphical view shows the ratios

among the tasks. Text views give most detail information. Moreover, we can modify the

time record in the chronological day graphical view (operation description in section

5.5).

4.2 Estimation

ECMT attempts to provide an efficient way for developers to create, track, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32

analyze estimates. ECMT’s estimation functions are based on the estimation approach

used in Release Planning. There are two kinds o f estimates in ECMT: work capacity

estimates and work requirement estimates. Usually, developers are unlikely to spend

eight work hours on one project a day. ECMT requires developers to estimate their

dedicated time for a project in one day, rather than using eight hours a day to calculate

work capacity. We calculate work capacity of a developer in a period by multiplying

workdays with the estimate of the dedicated time in one day. In ECMT, we assume that

development managers divide a project into small development tasks, and assign them

to developers. ECMT asks developers to estimate the dedicated time required for each

development task, which is the work requirement estimate.

4.2.1 Statistical estimation

In general estimation models, the estimator gives a single value as the estimate.

For instance, one estimator estimates a feature needs 10 work days. However, that does

not reflect how much confidence the estimator has. Usually, an estimator intends

something more: “I have 90 percent confidence that the feature will be done in 10 work

days, and 50 percent for 8 work days” to express the estimate. That is the stochastic way

of estimation.

However, it is unrealistic to gather the probability distribution o f estimates from

each estimator, since the real distribution of a stochastic variable is difficult to get in

practice. Instead, it is better to assume the distribution type for estimates, and then ask

for some parameters from the estimator to figure out an approximate density function.

The work effort for a development task is associated with such factors as the

complexity of algorithm, input or output interface, data structure, and even work

environment, and each effort tends to add to others to contribute to the estimate. Thus,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

33

the estimate can be considered as the sum o f a number of random variables. According

to the Central Limit Theorem4, the distribution of work effort estimate is approximately

normal. The estimate for the work factor is similar. So, they are assumed normally

distributed in ECMT. These assumptions should be tested in future work.

Since two values are enough to fully describe a normal distribution, developers

are asked for two guesses with different confidence intervals in ECMT for each

estimation. The estimator will give two values o f effective work days estimate for a task,

the first value is work days required that the estimator predicts with 50% confidence.

This value means that it has 50% probability that the estimator will achieve the task

before that time, and 50% probability after that time. That is also the mean of the

distribution. The second value is the estimate that the estimator predicts with 90%

confidence that the feature will be achieved before that time (we select 90% only

because it is a high confidence, others are also reasonable). It is considered the 90%

worst case. For the work factor, there are also two values required. The first is the work

factor that the estimator has 50% confidence, which is the average case. The other one

is the value for which 90% of the time the work factor would not be less than that. Work

factor estimation is related with a project. Since each project has a start date and

deadline, we can calculate the work capacity estimate by multiplying the work factor

estimate and the workdays between the project’s start date and deadline.

4.2.2 Updating estimates while monitoring progress

When a project is ongoing, work capacity and requirement estimation need to

be updated regularly to remain meaningful.

n

4 The sum o f the sample m easurem ents, ^ X j , as n becomes large, would tend to possess a N orm al distribution.
i=i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

34

The following terms are defined:

actual time spent (Tats)■ The number of effective work days spent on a task.

time still required (Ttsr): The number of effective work days needed to finish the

task after having spent the actual time spent. This is a random variable estimated by

developers based on their best knowledge at that moment.

total estimate time (Tlet): An estimate of the number o f the effective work days

needed for a task. It satisfies the following formula,

t̂et = Tats + Ttsr

Thus, it equals time still required before any work on the task is started, and the

actual time spent after the feature is finished (time still required is 0). Because the time

still required is a random variable, the total estimate time is also a stochastic variable. In

this thesis, if not mentioned, the estimate for a task means its total estimate time.

Updating the work requirement estimate for a task in ECMT means to update

the time still required estimate. This application will prompt the estimator to input two

values: 50% confidence estimate and 90% worst-case estimate. The first time estimate

is similar. The only difference is that the actual time spent is 0.

Besides updating the estimate, ECMT also records the modification reason for

updating for later reference. We predefine four reasons for modification.

1. Update estimation. The estimation is accurate, we only want to update

it to show our awareness of the development progress.

2. Misunderstanding requirement. After developers have done some

work, they find they are not solving the required problem. It is often

due to inaccurate requirement specification or weak communication

between users and developers.

3. Requirement change. “Customers can never tell you exactly what

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35

they want.” [Beck 2000] In common business software development,

users often cannot tell what they really want.

4. Inaccurate estimation. Inexperienced developers (or short o f domain

knowledge) do not have the estimation skills to make accurate

estimation at first. With the progress o f development, they understand

the task better, and can make a better estimate.

If developers need to update an estimate by more than one reason, we suggest

updating the estimate more than once (one reason at a time).

In addition, developers will comment each modification in detail to explain

their estimation evolution.

Estimation modification reasons are useful to analyze developers’ estimation

skills. As feedback o f previous estimation, developers can learn what the common

reason for personal inaccurate estimation is; what kinds of tasks are error-prone for

estimation. Hence, they can improve estimation skills.

ECMT does not track estimate changes of work factor (section 2.2).

4.2.3 Convergence of the series of estimate

A series of estimates for each task can be obtained by updating the estimate for

one task continually. By the end of development, the actual work time is available if

developers track their work time. Developers will find that the series o f estimates tend

to converge to the actual w ork tim e as the p ro ject proceeds, in o ther w ords, the

difference between the estimate mean and the actual work time tends to converge to 0.

In addition, the difference between the 90% worst-case estimate and the mean of

estimate will converge at 0, too. The following figure illustrate the convergence:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

36

Effective
Work Days
Estimate

Actual time

Work
Days

Project End
— > The 90% worst case estimate

-> Mean of the estimate

Figure 4.1 Estimates convergence

In figure 4.1, each solid dot is the mean of an estimate. The dotted vertical line

reflects the 90% worst-case estimate. A dotted horizontal line end with the last solid dot

is the actual work time line. All above data are measured in effective work days.

This conclusion is reasonable due to two reasons.

Firstly, the estimate becomes more accurate with time spent working on the task,

since developers know more and more about the task. At the start o f the project,

developers have to guess some issues about the task. However, as the project proceeds,

the uncertainties become smaller and thus the estimates will become more accurate.

Correspondingly, the estimator will develop more confidence in the estimate, so the

difference between the 90% worst case and the mean becomes smaller. At the end,

everything settles down, and the estimate is the same as the actual work time. Thus, the

estimate will converge to the actual time and the difference will converge to 0.

Secondly,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Tlel = Tats + Ttsr (section 4.2.2)

The actual work time spent on a task is certain, and the proportion of the

estimates (time still required) will become smaller with the progress o f the project. The

estimate error only exists in the time still required part, thus the total estimate time error

will become smaller.

This conclusion manifests the advantage o f regular estimation: the ability to

realize the potential schedule slippage as early as possible. Each time developers update

the estimate, they use their best knowledge at that moment, so it is the most accurate

estimate they can make.

4.3 Combination of estimation and monitoring

There are some applications available to deal with estimating and monitoring

software development, but no one attempts to combine these two (the author can not

find one). ECMT attempts to use estimating and monitoring information assist personal

software development.

4.3.1 Estimating with historical data

With using ECMT, developers will accumulate some historical data, that is how

much work time is spent on a task. While making new estimates, it is helpful for

developers to refer to similar tasks they have completed in the past. The actual work

time for a former task (if not finished, the latest total estimate time, in this section, we

do not distinguish them) in historical data is a good hint for the total estimate time for

the current task. However, if a developer has to browse all the old similar tasks, and

compute the average work time manually, most developers will be reluctant to take

advantage of historical data. ECMT provides a feature to assist developers in choosing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

38

similar tasks and computing the average work time. Assuming four tasks recorded are

similar to the current one and selected, and their actual work times are 4.5, 4.3, 4.0 and

4.7 effective work days. In addition, the developer has spent 1.4 effective work days on

the current task. Then this developer will get a suggestion that there should need (4.5 +

4.3 + 4 +4.7) / 4 -1.4 = 2.975 effective work days for the remaining work of the task, if

there is no special reason to change the estimate, (operation description in section 5.6)

4.3.2 Estimating with historical estimate series

In section 4.3.1, we take the actual work time of each task as reference for the

current estimation. However, we have the estimate series for each task, which includes

more information than the actual work time. One kind o f important information is our

estimate error at a special development stage. For example, the estimate error (mean of

the estimate) of a task is 1.1 effective work days at the 54% development progress.

Such data can give some hints for the current estimation. If many similar tasks’ estimate

series show that a developer often make estimates which are about 3 effective work

days less than actual work time while these tasks are 60% finished, the developer might

consider increasing the current estimate. However, the developer is not forced to adjust

the estimate, since there are many possible reasons for estimation error, and the current

task is different from others. Moreover, it is possible that the developer has adjusted the

current estimate. Therefore, adjusting the estimate based on such information will

cause over-adjusting. Figure 4.2 illustrate this usage.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39

Task A

Effective work

100% Workdays
End Date

50%Start Date

Task B

Effective work
days
m -

100% Workdays
End Date

50%Start Date

Task C

Effective work
days

100% Workdays
End Date

50%Start Date

Current Task

Effective work
days
m -

100% Workdays
Deadline

50%Start Date

Now

Figure 4.2 Estimating with historical estimate series

In figure 4.2, task A, B, C are similar tasks to the current one. Each Cartesian

coordinate system is an estimate series of a task. The x-coordinate is represented with a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40

scope form 0 to 100%, because the length o f each task’s work time is different, and we

need to convert the estimation date into that scope to compare all these estimates. The

long vertical line is the current development stage.

4.3.3 To-do list

Making a plan is a beneficial habit. The project plan for a developer should

include all the tasks to be done for the project, which can help to avoid forgetting

something important. The plan needs some effort. Since it does not contribute to the

work directly, many developers are reluctant to make plans. Based on the mean of the

estimate for tasks and their time logs, ECMT is able to generate a reasonable to-do list

for a project automatically.

For each task, it should have a start time and deadline. By defining N as work

days for the task, Ddeadiine as the date of deadline, Dt0day as today’s date, Nhoiidays and

Nweekends as the days o f weekends from now to deadline, we can calculate the work days

(not including weekends):

N — Ddeadiine " Dtoday ' Nhoiidays ~ Nweekends

The remaining work time (Tr) required for the task can be computed (the mean

of the stochastic variables is used here) by using time still required (from latest estimate)

to subtract the actual time spent after the latest estimate (obtained from the time log).

Then the amount o f the work time for the task a day (Tday) can be obtained by:

T
T = —day N

The time fo r task a day means that if a developer can spend such time on the task

every work day, the task will be achieved on schedule (With different confidence for

remaining work time Tr, developers get deferent confidence).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

41

4.3.4 Project summary

To be aware o f a project’s progress, the remaining work capacity and remaining

work requirement are essential. As a personal tool, ECMT only concentrates on one

developer’s tasks and summarize one developer’s assigned tasks.

4.3.4.1 Time spent summary

By reviewing the work that has been done on the project, developers can be

aware o f how much work has been done. Because ECMT records the uninterrupted

time spent on tasks, it is easy to make such analysis. The total work time and the actual

work factor are selected to indicate the effort spent. The total work time reflects how

much work the developer has done. The actual work factor indicate how much time is

really spent on this project against the body present time.

The total work time (T) is the sum of all uninterrupted time spent on the task of

this project measured by effective work days during a period o f work days (D), and the

actual work factor (W) is:

4.3.4.2 Capacity constraint

To know if development is on schedule, it is important to know how much work

remains besides the work that has been done. Following the definition in 2.3, the

remaining work in a project is called remaining working requirement (f). For each task,

we can calcu late /by using its latest time still required estimate to subtract the actual

time spent after the latest estimation.

To get the total remaining coding requirement (F), all tasks’ remaining coding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

42

n

requirement estimate should be combined, F = ^ f . . Since F is a line combination of
(=i

n

normal distributions, F is also normal distributed, where the mean is ̂ p f , and the
(=i

2
f, ■i=l

Remaining coding capacity (N) reflects the available total uninterrupted work

time from now to the expected deadline. It is an estimate based on the work factor

estimate. Remaining coding capacity is the product o f work days remaining (T) and

work factor (w). The work days remaining are counted from now to the deadline

excluding weekends, holidays, vacation days. Since the work factor is estimated as a

random variable that is normally distributed, and TV = T x w , thus N is also normally

distributed. The mean and variance are T x p w andT 2crw2.

To reflect the development progress, we shall define a new quantity D(T),

“delta”, as follows,

D (T) = N - F

D (T) depends on the time T, the number o f workdays in the coding phase.

The distribution of D(T) is also a normal distribution because N and F are

normal distributed. Considering the distribution o f Remaining coding capacity and

n

Total remaining coding requirement, the mean for D(T) is and the
i=i

n

variance is T 2crw + ^ 0 / •
/=i

With the distribution o f D(T), we can obtain some interesting results.

The most interesting result is how much confidence the developer has that the

project can be done before the deadline. That is the probability that D(T) > 0, which can

variance is V o -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43

be calculated from the distribution of D(T). If there is 80% probability that D(T)>0, that

is a good news. If there is 25% probability that D(T)>0, it is probable that the project

will be late, and something should be done. The developer can increase the work factor

estimate so to add more time on remaining work capacity. Basically, work factor is an

estimate based on the old data, but the developer can adjust it. If this task has a high

priority and there only remains a short period, the developer can make a higher estimate

for the work factor. Many people work more time before a deadline, so the higher work

factor estimate is reasonable. In a common situation, the work factor for a full time

developer is about 0.6 [Penny 2002]. It is rational if the work factor is 0.9 or even 1.2

considering working extra hours a day. If the scheduled release date can be negotiated,

postponing the deadline is also a choice.

The second result is that the developer can calculate if he or she needs the 80%

confidence, or 50% confidence to achieve the project, then how many workdays are

needed. That is to compute the T, given the possibility of D(T)>0, and the distribution

ofD(T).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5 Prototype implementation

The previous chapter described ECMT concepts in detail. A prototype was

implemented to explore and demonstrate the usefulness o f ECMT concepts and Release

Planning. It also provides a basis for generating ideas for future work. In fact, some

concepts in ECMT were updated while this prototype was implemented. This chapter

provides details on ECMT features and how they are implemented.

Most features in chapter 4 have been implemented except “Estimating with

historical estimate series” (section 4.3.2).

5.1 Overview of ECMT

The main interface (figure 5.1) of ECMT is divided into two parts: the task

hierarchy pane at left and the tabbed panes at right. The task hierarchy is a tree structure

for organizing tasks and projects. The tabbed pane group at right includes five panes.

The summary pane shows the information for current projects. The track pane includes

a table that contains tasks that the user wants to track. The estimate for a task is shown

in the estimate pane. The detail pane shows the detailed information o f a task or a

project, and the user can modify its information. The day report pane shows a day’s

work using graphical reports and a text summary. The panes, except the summary pane,

reflect the task or project selected in the task hierarchy.

The menu provides operations for organizing the tree and some controls for the

views in the right tabbed panes. We will describe them when introducing related

features.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

45

^ E s t im a t in g and M onitoring - T hursday, N ovem ber 21 ,2 0 0 2

rile Operations View Tidtk

@ 0 3 0 0

jn i* i

in Tone Log
9 Q̂ l Release1.2

9 Q2i features
^ C h d iig eW o rk fac to rfcsim atio ii r/flti
^ lIp d M ftS triic tu ro A u to in iit^d ly
^ D ay ftep o rtG rap h #100
^ T askO eta ilT ab io #101
^ CombineEstimates #102

9 pothers

ST est #103
Learning #104

9 Q2 General
^ Surfinglnternet #106
^ m eeting #107
^ LunchTime #106

9 I&3 Release 1.1
9 ^features

^ TrackPane #109
^ TreeStructureOperation #110

TabbedPane #111

T ask s
Today effactlvn work tuna is 2:4fi:0

: - N a m e * ! TotalTime&l>HiadaVrime i Lasmme! : - Track ItimePass...
C han ge Wo rkfactorEsimation #98
U pdateStructureA utom atedly#99
DayReportG raphflO O
T askD etailTable#101
C om bineE stim ates #102
Test #103
Learning #104
Surfinglnternet #106_____________
m eeting #107
LunchTime #108
T rackPane #109
TreeStructureOperation #110
T abbedPane #111

8:41:0
8:32:0

32:22:34:
 6:lT:0'r
 4 3 :4 :l6 f

0 :0 :0 !"

Iil 0:0:0i_
0 :0 :0 :

’ 0 :0 :12
0 :0 :0 ;

0:0:0!

" 0 :0 :61"

0:0:01 2:9:0 ►
1:12:01 0:49:0 ►
1:34:01 0:0:14 >

0:0:0! 1:3:0 ►
0:0:0! 3:32:1 ►
0:0:oj 0:0:0 ►
0:0:0i 0:0:0 ►
0:0:01 0:0:0 >
0 0 0 0:0:0 >
0 0 0 0:0:12 >
0:0:0! 0:0:0 ►
0:0:0! 0:0:0 >
0:0:0! 0:0:0 ►

0 :0:0
0 :0:0
0 :6:6

""6 :6:6
0 :0:0
0 :0:0
0:0:0
013:0

“ 0 :0:0
0 :0:0
0 :0:0
0 :0:0

""6 :6:6

Slop ViawAN

I' O t\ O L i S t (dutmrMtRrily ynncratud li om lha estimations)
You are expected to do ihn following tasks today to gel them done on time (assume today Is workday)

• UpUateStructureAutnmatedly #99:0 hours, 41 mins, 0 secs
• DayReportGiaph # 1 0 0 : 1 hours, 8 nuns, 32 secs
• TaskOfilallTiible # 1 0 1 : 1 hours, \? mtns. S1 secs

Figure 5.1 Estimate capture and Monitoring Tool

ECMT was implemented using the Java programming language (JDK 1.4) and

XML to store the information. Moreover, we used the probability package in the

OR-objects library to make normal distribution operations for estimation analysis.

5.2 Tree structure

ECMT organizes projects and tasks in the left pane with a tree structure. The

nodes with children represent projects. The leaf nodes are task nodes. Each node has an

identification number to avoid name confusion. We suggest users define a project node

according to a real release or project, but we do not enforce or check this in ECMT.

5 http://opsresearch.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://opsresearch.com

www.manaraa.com

46

Q d T im e L o g - - - - - - - -
9 R e le a s e 1 . 2 p r o j e c t

f O f l f e a t u r e s
- - ^ ChatifeWorMaetotEairirtta #98

UpdrteSlradureAutwn atedty #99
DajfieprtOraph #100

• ^ TsafcD eteilfable #1 tM- task

9 (]2 o lh e r s
^ Test 1103
^ Learning #104

9 ^ G e n e ra l
^ Surfinglrtemet #106

^m eeting #107

^ LinchTime #103

9 Oi Release 1.1
f ^ fea tu res

^ T r ads Pane #109

t^ T r

i^ T a

Operations—
+ AdtfTask

+ Addfroject

X. DeleteProjectOrTask

& Rename

Figure 5.2 Organization of projects and tasks

ECMT provides the following operations to organize projects and tasks. All

operations can be accessed from the menu, and some operations can be accessed via

popup menu and toolbar.

1. Add project: add a non-leaf node in the tree hierarchy. The user is prompted

to input a descriptive name and a detailed description.

2. Add task: add a leaf node in the tree hierarchy. It also requires the user to

input a descriptive name and a detailed description.

3. Expand and collapse: if the current node is expanded, the collapse menu

item is available; otherwise, the expand menu item is available.

4. Expand Tree and Collapse Tree: only available at the menu for expanding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the whole tree or collapsing it (figure 5.3).

47

5. Delete project or task: delete the current node.

6. Rename: rename a node.

Dl

to
9

9

9

Figure 5.3 Expand or collapse tree

5.3 Details of a project or task

The detail pane is related to the node selected in the tree structure. Since the tree

structure includes two kinds of nodes, project nodes and task nodes, there are a project

detail pane and a task detail pane.

Figure 5.4 is the detail view of a project node. At top of this pane, a task list

shows brief information of all tasks in this project, which includes task name, task

description, time spent on the task, time still required, and the remaining workdays.

Below is the description for this project, the user can modify it by pressing the

“ChangeDescription” button. The “estimatable” check box is used to indicate that the

E stim atin g an d M onitoring - T u esd a y , N o v em b er 2 6

3 Operations | View R ack He

f 1 IF NameI
IF Total Time

Time Log
t o Release 1 .2 j TodayTime
9 t o feature^ IFLastTime

$ c h '" ' r? Track

Davit Tim ePassed

ExpandTree

CollapseTree

t io n #98
fully #99

TaM
9 toothers

^ T e s t
^ L earning #104

^ C o m b in eE stim a tes #105

t o General
^ S u rfin g ln tern et #100
^ m e e t in g #107
^ L unchT im e #108

t o Release 1.1
f t o fe a tu r e s

^ T reeStructureO peration #109
^ T abbedP ane #110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

48

user needs to estimate a work factor for this project. If users mark the check the

checkbox, they should input the start date, deadline for this project, and an estimate for

the work factor.

File Op«Mi<vti view JfKk Help

a + + * -■
Wat ! MpReean J _____ -

The Detail t f Pi aiect letfu i e s «M

Hie foilOfWtiny t asm s; app ear^ hi IN& project'

♦ Tosh OHinijeVWMPf actofEsenelM i Deccieelorv tfMfige M from lt»e took flsUmrtkm to ioIom b eotvnaiion. 1. CBlfcnatkmfar werM eder stm M
S p e d Total Time 8 feaur £, 41 11 s a c s
Based on 1liem>nniB.><Misiili neesin v i » \ ,(i v u vtoflm sJillw tM ic
yiMi liM ! Q w o k days befoi a (hw deadline .*«*. .’. 1 ?u

* lash UpdaiBbtrjctiirBAdofnatMtv DewiWwn:
Spud Tdi&t Ttm* 8 how* *■ 32 mto$> 6 $«£$
Based on m e esthnafle* you B4IH need i ■* j. s . i 1 ■■ J s * . * to tkiftsh the task;
you h M 4 work days b d * « IIki dendlinn ‘ «t i 1 \ Iff

• Task DayReiMMlGf aph Descridtane Draw p a u h baaed on lecordefor a day.
Spent Total Time 32 Ik-* *- r n 'um., 3$ sscb
Baiedon1tM e«Um aiB,yousiiH »»ed'l >MijslA% i \taflnkshlhBlM fc:
you h o w i work day* before thedeatitae z-e Al l . . rfi

• Tadt TaskOelaillawe DeMfkeiMU
Spent Total Time l '\-a i « 11
BasBd on the Htfknri*. you saw need i 4 «.a.» s. ™ i m * w v c & to finish the tMk:
you have 4 work days before ttia tfeadMwi JnK7 11 .!W

D escnw ion for Ih la pio iect:

Tlvs piojeti concludes sow * new fea tu res .

j cnanpei

J M J l i . S I DeadHne 2C0i 1130 t : OK

M ekfactM EelinM e CHMI ;r 6 *«*tC »»*C W *> C4

Figure 5.4 Detail of a project node

Figure 5.5 is the detail pane for a task node. The pane includes a table that

includes detailed time records when a developer works on the task. Usually, the data in

the table is generated by using the stopwatch for each task (section 5.4). By double

clicking the time items in the table, the item will become editable and users can modify

it. Also, users can insert or delete a record by buttons below the table. ECMT also

provides a more convenient way to modify time records with a graphical view (section

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49

5.5). There is an editable pane for users to add a description for the task. At the end of

the pane, users can set if the task is “estimatable”. All development tasks should be

“estimatable”, and users are prompted to input the start date and deadline. If the task is

non-work-related, we can ignore this property safely.

Estimating md Monitoring - Toesdav. November 26,2062

File Operations View Track Hi

[i|

-iQ lxl

Detail

rhe Detailed Records or task TaskDetaiiTaWe #101

NO#* I slartTime I StosrTJme
1 2002.11.12.14.33.00.0001 2002.11.12.18.08.00.000
2*"... T0l241.19.li03.00.odal........ 200111.1 i'll 5.21.00.000
3 2002,11,26,15,40,00,0004 2002 11 20,16.43.00,000
4..... 2Ct3J5lTi554l27Mol 2003.05434 5.24l28l593
5.. 2003 0ST3lTsl24i29l56dl 2003.05.13.15.24.30.39 0
6...... 2003.05.13.15.24.40.015j 2003.054 345.24.42.265
f..... 2003 05 1 3.15.24.4571 ai 2003.054 3.15.24.464 09
8 2003,05,13,15,24,49703! 2003.051315,24,50,265
9..... 2003,05,13,15.24.4970342WTod.iT4 5TT52.8i2
10 2003.05.13.15.25.01.187! 2003.054 3.15.26.01.859

Insert before InsenAfler Delete j

Desciipiionfor this task:

Develop the ta sk detail p ane

v Estimatable

2 0 0 2 . 11.11 2002.11.30

Figure 5.5 Detail of a task node

5.4 Tracking time

A stopwatch is a natural way to record time spent on an activity. ECMT gives

each task node a stopwatch in a track table, but only one can run at one time. There is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

50

“play” button (^) for each task in the track table. When it is clicked, ECMT will record

the start time of the task, and the “play” button will change to a “stop” button (H).

Meanwhile, the time passed column in the table starts to show the amount o f time

elapsed. ECMT will keep tracking time until the “stop” button is clicked. In such a way,

time spent on tasks is recorded in detail. The other columns in the table show (figure 5.6,

5.7, 5.8, 5.9): Total Time (overall time spent on the task), Today Time (time spent today

on the task), and Last Time (latest time recorded on the task).

Since developers can have many tasks, ECMT usually only shows the tasks in a

project in the track table (figure 5.6).

N&venrihif* /ft. TtXL*I»-
I Mr gpeuM nro {<«

a + + *

-IQ] x l

l&lKneUg

^ t.titt'M J 'tV /iX -M tttih ! *10 M

Updtle&ryettf Miufccirori
Tasks " H I

V Mi* ■* <$"i

f Ŝtaters
t TsM#tn

l̂ wfNngPlM
f (dGanBTat

t
SurflFnMHwne* #1M

L̂unehiimfl «n»
f (ji Fteteas# 1.1

f ^ Tr(Ht&triaetur«Op«f<MloA MM
*

€Hdo*i;i4

!«kviffeclMi uforktwitwJir;/
Nair* * TcfrTmt- i TgtfajTim# UsTTan# ‘ Tra|k IrimaPaM

Cf t » f l 9 i W9 > Ma i : t i wC#38 M M 1 0 0 ? 0 n 7 > 0 0 0[;:
U D tfa ta S ltu c [u r< M ta .« 0 * n)9 r ti¥ f9 9 S L 0 :4 4 0 U U Q t> 0 fl f l k ,

C'*P8&0i*>iapi#lC0 i2 3 ? i 5 2 .B 0 00 tf > 0 0 O p611 9 o ie o 0 0 0 >

Figure 5.6 Track table for a project

However, users can click the “ViewAll” button below the table to show all tasks

(figure 5.7).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■■n
Timm ng

f* (j£6 feature*
M|tlkNl«rtlf »>C<tit r «W AMi-rtralt/ ./*T1

IB* i* ^ 1 «1$9

T*lMMI«ai«Me D̂1
f t^MiWI

t,* if fling M *4
^ CoenMM£etlmafle* #t*S

iUtnehftme «1H
f (pftetattfr 1.1

f {£&?#«&«■ **
t Tr»*Siri«iu«Op«<'«eiM> #1tt

fitiM tfim s i l l

Task*
Tadjpflflw tM w ort tmw li kSCT

n s ~ e - I TciifTime 7
9.41.1 1: '

TCO^Tw* I
0.0 7

L u n im e . . T ittk |TlmiPfttt:]
Q 0 7 > 0 0.01

u o t o » $ * u t t j * A y i o * i a r e i j y # 9 9 i 8:323 O:M0 000! > 0 0 0
DWRfDOflOWPfl #1 05 m m 2:350 0 0 0 k 0 0 5

ratiln #101 i fl:30Q 0 0 0 ^ 5 0 0
F«lf1© 3 00.0 5 0 0 0 0 8 ^ 0 0 0
L«4ffMg*1Q« J fltoto f f . O G 0 0 0 ► 00 0
C &mbiffeEsbmit#s #10$ 55:31 •» 5 0 0 7 26-16 00 0
S u r T n g ln ln r n a l i i lD f i 55:3 0 0 0 0 0 0 > 50 0
« ib h 6r ? p # 16? 5 5 0 o o . e 0 0 0 b 0 0 0
LufltriTim* 1100 A.0:H o . o o C * ' V 00 0
Tf 99-,SlnKV«OM«h0ft ** 09 0.00 0:00 0 0 0 > 0:0 0
r s b h t3 'd P a n » # 1 ID n-ftl 0 0 0 0 0 0 > 00 0

Vto*M

Figure 5.7 Track table for all tasks

Users can configure the table to hide some columns when they do not need all

the information. The menu “View” includes the columns items as check boxes, if they

are unchecked, they will not show in the table.

Uhmititig amjM&nltaring • 20O2—
FM OpwKioitt [851 v** m
a + I W ltaM i

“r7w ’ “" . " -•'lO UM m gy i Time Log
t y n M M * 1 ? F o o ^ l r a

f ID l<miir*l' i iMttka*
f " * liacfc

l#>- • 'T ancf’a M M

, CgMndTiH

“ £ 7 1
$e Centonat atkn* m o| IS

f (BUM**
§ 5urfip>o*nterrwrt 019$

meeting #»l?

| t jn c h la r t t f i

? $£ltetease1.1
9 $2 leant* es

r - % W «

t TreeStiur(ur«Opef«iian mw
MaMvOPwcMI*

IlK t ,1

Task*

-IQ l xt

it
■ »UFI

N i n n * * f T o w ib r S * " [r u n
C U ir ia t- if tO r t- fit lc rE *iinA liuri 9 <111 t> ODD

5 ? # 1 l i, If ODD
P^0PC^1l3f5«pfi'p1K)....... « « > « : ► <100
f » 5 k U # 1 a * f f s t s ! t # 1 0 1J n u t 1 0 6 0

1 b o a : > 0 6 0
U s n m t i g i T f l * ' e m > £ 6 :0

50:31 9 t 0.0:0
0 0 3i ► 0 0 :0

r n ^ R 5 f 1 0 7 O O f l T 0 5 0
i.;y n (f .h t1 m $;f l5 5 * S u : |» O O P

TmH&utfur&Q&ei&m 1 1 0 9 - - O i M k k 0 6.0
T j f c b ^ a P i r - « .# 1 ! 0 ; ; ■ l> 0 0 0

3 * T “

Figure 5.8 Configuration of columns in track table

The items in the track table can be sorted by each column. Users click the

column heads to sort the table. There will be a symbol “<” (descending) or “>”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(ascending) to indicate that the table is sorted by this column.

52

S u m m a i y T r a c k Estimate , Detail | Dayfteport ,

Tasks
Today effective work time is 357:7

Name i TotalTims * Track Tim ePass.l TodavTime:::,; LagETime
CoinbineEstimates #105 ... 50:31:9 l> 0:0:01 0:0:0 7:26:46
DayReportGraph#1Q0 1 32:22:39 > 0-0:0 2-35:0 0:0:0
C hangeWorkfa cto rEs itn alio n #98 8:41:11 0:0:6| 0:0:7 0:0:7
UpdateSlriictureAutomatediy#9i 8:32:6 > 0:0:0 0:44:0 0:0:0
TaskDetailTable#101 6:11:9 > 0:0:0! 0:38:0 0:0:0
LunchTime #108 1 0:0:14 l> 0:0:0 " 0:0:0 0:0:0
Test #103 0:0:8 l> 0:0:0 0:0:0 0:0:8
S u rfin g ffim e tS M :_________ 0:0:3 1> 0:0 0 0:0:0 0:0:0
TabbedPane #110 0:0:1 0:0:0 0:0:0 0:0:0
meeting #107 0:0:0 i> 0:0 i o T 0:0:0 0:0:0
TreeSiruclureOperaticm #109 T . . . 0:0:0 0:0:0! 0:0:0 0:0:0
Learning #104 0.0 0 t> 0:0:0! 0:0:0 0:0:0

Stop i ViewAl

Figure 5.9 Sort track table by “TotalTime”

A “TodoList” below the track table shows the planned work time for each task

today (section 4.3.2). ECMT arranges “TodoList” and the track table in the same pane,

because developers can easily know what they are supposed to do by viewing the

“TodoList” while tracking their activities.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

53

Tasks
Today effective work time Is 3:57:7

N a m e >_ | T p ta r n m e i T o d a y T im e L a s iT im e _ _ 1 T ra c k F T l m e P a s s e d
ChangeWorkfactorEsimati...
Up d ateStructu re Auto mate...

8:41:111
i l a a i p

0:0:7!
0:44:0!

0:0:71 P
0:0:01 P

0:0:0
0:0:0

DayReportGraph #100
TaskDelaiiTable #101
T est#103
Learning #104

32:22:391
6:11:9

0:0:81
. M o ! . .

2:35:01
0:38:0!

0:0:0^
0:0:0!

_ _ _ _ o ® o] ! > L _ _
0:8:0; P
0:0:8 t> i
0:0:0 P

“ ^ 2 6 :4 B |T " !................

0:0.0
0:0:0
0:0:0
0:0:0
0.0:0CombineEsllmates #105 r 50:31:91 0:0:0!

S iifflrialn tem etiio i " .m o i - ; : ■■■:!• '..OJOiOi ^ : ;=■ f : 0:0:0
meeting #107 0:0:0| 0:0:0! 0:0:0 > 0:0:0
LunchTime #1 OS 0:0:14 0:0:0! o ® o f> 0:0:0
TreeStructureOperation #.... 0:0:01 0:0:0! 0:0:0] P 0:0:0
TabbedPane #110 0:0:11 0:0:0! 0:0:01 P | 0:0:0

 : :
I S t o p || V lew A U

TodoList (automated^ generated from the estimations)
/ou are expected to do tlie following ta sk s today to get them done on time (assum e today is workday)

• UpdaleStructureAutomatedty #99 :1 hours, 11 mins, 58 s e c s
• DayReportGraph #100:1 hours, 59 mins, 55 s e c s
• TaskDetailTable # 1 0 1 : 2 hours, 59 mins, 57 s e c s

Figure 5.10 “TodoList”

5.5 Review

Graphical view of time records enable developers to understand there their time

goes visually. At the end of a workday, we suggest developers review their work in the

day and adjust the work time to reflect the real work.

The review pane includes three kinds o f reviews of time records in a day. The

chronological day graphical view describes the work done in a workday.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

54

l - a i a f e i B a g i s i DjyflqMrt

Hello, today is Tuesday, November 26, 2002
Year 2002 » Month 11 » Day OK

t • ijpM time Sfftiriwlst
, H - . 11, ' l - M . p l g a t l f f i e 1 1 3 n

MdRecwtl deiele ShowfuIWo | kttetiuptedTime . UodKyjescfWlon

Figure 5.11 Chronological day graphical view

The chronological day graphical view also provides the way to modify the

records. The block between its top line and bottom line indicates the time spent on a

certain task. Dragging either of the lines will adjust the time log. Moreover, the popup

menu and the buttons provide the choice o f adding a new record or deleting an existing

one.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

55

UpdateStructureAutomatedly#99 1:32 PM to 2:21 PM; effective time : 44

Interrupt time 5 m inutes

DayReportG raph #100 2:28 PM to 3:10 PM; effective tim e : 42 m inutes

__________________________________ ModifyDescription

-Dimic i -adjust InterruptedTime

, AddRecord

: DeleteRecord

ShowFulllnfo

Figure 5.12 O perations in the chronological day graphical view

The time distribution graph (figure 5.12) illustrates the total time spent on each

task in a day and each one’s percentage. This graph visually displays developer’s

working time distribution and helps to understand where the time goes.

Effective Tim e(and their percentage) you spend on Nov 26, 2002

The total effective time you spend is 3:57:0

Percen a g e

DayReportG raph #100
2:35:0
65%

U pdateStruci fm a t e ^ J ^ taj|Tafcl|e #1 m

¥^4 I 0-38:0

T asks

Figure 5.13 Time distribution graphical view

In addition, a text summary gives a text format description for a day’s work,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

56

each task in a line.

Summary
• You *p * n d 0 h un t* . -H m in t , 0 * on ih « f c i tu r r U p d 4 teS tiu c iu i« 4 iin o m b iK i|y * 9 * o n T u i f d iy , N o v tm b r r 2 $, 2 0 0 2 .
• You sp e n d 2 hours* 3 5 m in i) 0 s e t s on th e fea tu re D ayR eportG raph *10(1 o n T u esd ay . N o v em b er 26* 20D 2.
• you sp e n d 0 h o u rs, 38 m in s, 0 s e c s on th e fea tu re T a sk D eta llT a b le * 1 0 1 o n T u esd ay , N ov em b er 2 6 , 2 0 0 2 .

Your sp e n d 3 h o u rs. 5 7 m in s , O s e c s o n T u esd ay . N ovem b er 26 , 2 0 0 2 .

Figure 5.14 Text summary for a day’s work

5.6 Estimation

The estimation pane provides features to update estimates and analyze their

estimates. Figure 5.15 shows how to update the estimates.

Etfimke-UpditieSnuduieAirtomatedly #99

Estimates: 11)29/02 7 * 2 PM: Update ▼

Selected Estimate..

TimeStflRequked 0 6 SlTAWorstCaseEslimale 0 9 (effective work days) !

' Spent <i.u:r: (lim s) after Uiis estimate, still need ».■!/.'•1 th:rn:s) i

AcluaiSpentTlme 1.07 TotalEstimatelinie :i CM effective work da y s) I

Comment Ur-dale ;
Update Time Friday, November 2 9 ,20D2 752:20 PM ESI

Update Reason ■ Update estimation __ |

Reference UpdateEstiinate ' | DeleteEstimate i

Figure 5.15 Updating the estimate

Users are required to make estimates for the task using units of effective work

days. The pane shows the last estimate (first line) and the time spent after last estimate

(second line) to assist users in understanding the development status. Users will make

new time still required estimate for the task. Moreover, users are expected to record the

modification reason and add a comment for later reference.

The “reference” button will invoke a reference window to use the historical

similar tasks’ data (section 4.3.1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57

R Mease select the Nftorical data arwJ get the sa>ggeftw«\fisf estimate

Select the similar tasks
ppp *1

►r ClM ng«W orkiactQrE**t»ikin «9S. Actual w o ik tim e |w total u n t u n e lima): 5 09 a f ia c iM w ork a ays

Updtrtasnuclut oA utom ktidiy *OS, Actual w w k tkno {or l o w ttfk n M * ik m); 1.67 street » /t work day*

DayttapottGt aplt *100, Actual work tim e {or total e stim a te tlitwK 5.0S effective work d a m

TaskD etarilatile #101 . Actual w ork tim e (or total ea lm ia le lane): L 2 7 effective work d ays

< ComblneCistimates *105 . Actual work tim e lor total e stim a te time): S.3B e lf e c tM w ork days

Average actu al w ork lane: 0 .21

B a sed o n liar la n e you sp en t o n th is ta sk and t in tiistor ral data you s e le c t

lacon tm end Time Still N eed ed Is 6 .15 afreet Art work days

Figure 5.16 Reference window for estimation

A list in the window includes all tasks recorded by ECMT (which may be long

in general, however as a prototype tool, it is acceptable.). Each line of the list includes a

task name and its work time. After selecting similar features in the list, developers will

get a suggestion based on the selected tasks and the current one.

Another graphical view demonstrates the estimate series.

Effective W o r k d a y s

S fsu D ate
2 6 0 3 .0 2 .1 0

Figure 5.17 Estimate series

‘ t e s d l ld M e W ork D ay s
2003J2.22

This estimate series graphical view illustrates a user’s estimate for the task from

the start date to the deadline (section 4.2.2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

The red dots in the graphical view are the mean o f each estimate. The blue

vertical line indicates the 90% to 10% confidence estimate (section 4.2.3).

A text summary for the estimate series provides the most detailed information at

the end o f the estimate pane.

History
* 2/21/03 4:12 PM; finished

Change reason; Update estimation
Duration: 0 hours ;Spent time: 43 hours, 4 mins, 16 s e c s
Predicted total time for the task (mean) is 5.38effectrve work days
Description: finished

* 2/18/03 10:04 AM; Third estim ate
Change reason: Update estimation
Duration: 13 hours ;Spent time: 26 hours, 40 mins, 40 s e c s
Predicted total tim e for the task (mean) is S.03efTectiue work days
Description: Third estim ate

* 2/13/03 10:55 AM; Second estim ate
Change reason: Update estimation
Duration: 22 hours ;Spent time: 15 hours, 0 mins, 54 s e c s
Predicted total tim e for the task (mean) is 4.65efTectiue work days
Description: Second estim ate

* 2/10/03 9:42 AM; First estim ate
Change reason: Update estimation
Duration: 28 hours ;Spent time: 0 hours, 0 mins, 0 s e c s
Predicted total tim e for the task (mean) is 3.5effective work days
Description: First estim ate

Figure 5.18 Estimation text summary

5.7 Summary pane

The summary pane provides an overall view of the current project. All items in

the pane are described in section 4.3.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59

Your current projects:

Releasel .2 (working phase: 11 of 21 working days elapsed, including today)

• You hw a spent 1ZM effective wrork days on alitasks in this protect

• Workfactor {actual): 1.12

• Workfactor estimate (mean): 0.6

• Workfactor estimate (90% worst ca se): I].? 3

• Remaining coding requirement estimate (mean): J.1 effective work days

• Remaining coding requirement estimate (90% worst c a se): 1.00 effective work days

• Remaining coding capacity estimate (mean): i i effective work days, not including today

• Remaining coding capacity estimate (90% worst case) :2.3 effective work days, not including today

• Delta (mean): /'» effective work days

• You have (!3,7.?h> confidence to finish the project on time

• For 50% confidence, you need 5.17 work days; for 80% confidence, you need 8.95 work days

I ' ' - • X*;" 57«i |

Figure 5.19 Summary pane

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6 Evaluation

The author and his colleagues used ECMT to test its usefulness. The experience

helps to generate ideas for future work and refine the tool. This chapter discusses the

author’s experience and feedback o f colleagues.

Since many features o f ECMT were not available while developing it, and the

data format changing, the author only provides the data for the last developed feature.

6.1 Author’s experience while implementing a feature

The feature, “combining the remaining work capacity and the remaining work

requirement”, was developed at the end of this project. ECMT provides an overall view

of all the tasks by combining all the estimates as D (T) (section 4.3.3):

D (T) = N - F

This feature calculates the amount of the confidence that all the tasks finish

before the deadline and the number of workdays required with 80% or 50% confidence.

The author recorded the work time spent on the task. Figure 6.1 is the detailed

time log.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Detail Ij M S S B B

61

The Detail Records of Feature CombineEstimates #102

No# > StartTime StopTime I
1 2003.02.10.09.45.00.000 2003.02.10.13.03.00.000 *
2 2003.02.11.09.36.00.000 2003.02.11.13.23.00.000 gj
3 2003.02.11.14.38.05.215 2003.32.11.17.55.00.000 U
4 2003.02.12.12.54.00.000 2003.02.12.17.47.03.253 I I
5 2003.02.13.09.45.00.000 2003.02.13.13.22.00.000 IB
6 2003.02.13.14.23.00.000 2003.02.13.16.41.00.000 1
7 2003.02.14.10.45.06.080 2003 32.14.13.04.20.352 S
8 2003.02.14.15.25.00.000 2003.02.14.17.06.00.000 S
g 2003.02.17.09.22.13.325 2003.02.17.12.26.12.235
10 2003.02.18.09.08.00.000 2003.32.18.12.52.03.258 ■
11 2003.02.18.14.08.05.510 2003.02.18.17.33.05.326
12 2003.02.19.09.18.00.000 2003 02.19.12.35.00.000 ~

| Insert before j InsertAfter Delete Help

Figure 6.1 Detailed time log

Figure 6.2 is the to-do task generated by ECMT during the development.

B ased on the estim ate, you are expected to do:

• CombineEstimates # 1 0 2 : 2 hours, 4 mins, 13 s e c s

Figure 6.2 To-do task generated

Figure 6.3 is the estimate graphical view for this task. The author made 3

estimates during the development. It is shown that the estimate is more and more

accurate as development proceeded.

Effective W ork D ays

5
4
3
"t

D e a d lin e W ork D a p
2003,02.22

Figure 6.3 Estimate series

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

62

It is difficult to estimate work time accurately for a new task at first. From figure

6.3, the first estimate is less than the actual work time by 35%. Moreover, the error

between 50% probability and 90% probability is also large, that is 29% in the first

estimate. However, the estimates tend to converge to the actual work time with the time

going. The differences between the 50% confidence estimate and the 90% worst-case

one tend to converge to 0. This agrees with the analysis in section 4.2.3.

6.2 Feedback of ECMT

The author asked his colleagues to try ECMT in a casual way for their

development or just as a general-purpose time tracking tool. Most feedback o f ECMT is

positive. The time tracking feature is not annoying, though it needs some effort to

trigger the stopwatch. The continuous estimate updating is useful for understanding the

development status, because users make the estimate with the latest monitoring

information and the best knowledge of project at that moment. Reviewing the summary

pane, time tracking data and to-do list produces some progress pressure. Not every user

likes such pressure. Some users think pressure decreases morale when it shows their

low work performance is behind schedule. However, the author and some other users

feel that bad news motivates developers to higher work performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7 Conclusions

7.1 Conclusions

Release Planning is a management framework for commercial software vendors

to estimate and track software releases. In the organizations applying Release Planning,

the development group will break the features down into appropriately sized parts and

assign them to developers. After that, developers measure the work effort of each

feature. Then development managers collect data from each developer, and summarize

it as the overall estimate for the release. If developers cannot make accurate estimates

or cannot follow the estimates, there will be schedule problems. Releasing planning

provides approaches at the organizational level to estimate and track software releases,

and these approaches are based on personal estimation and tracking work. ECMT

provides tool support for Release Planning at individual level. ECMT’s features are

divided into three categories. The tracking time feature records time spending on

hierarchical organized tasks, and provides graphical views of the time spending. The

estimation feature logs and analyzes the estimations o f tasks as projects proceed. The

combination o f estimation and tracking time provides up-to-date progress measurement

o f projects.

ECMT provides features to monitor development progress as follows,

1. Tree hierarchy is appropriate for organizing projects and tasks.

2. Dedicated time is used to measure work effort.

3. Developers track their work time by clicking in track table, which also provides

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

64

some overall information, for example, total work time, today’s work time, and so

on.

4. Developers can review their time log in detailed text-based and graphical reports.

ECMT provides features to assist developers to make better estimate as follows,

1. Dedicated time is used to measure work requirements.

2. Work factor is used to measure work capacity.

3. Developers can review and analyze estimates in detailed text and graphical reports.

ECMT combines monitoring and estimation information:

1. Developers can use historical data as reference to assist current estimation.

2. Summary for the current project reflects its development progress by comparing

the remaining work requirement and remaining work capacity.

3. Task to-do list devised by considering remaining work requirement and remaining

work days motivates developers to put more effort on important tasks.

7.2 Future directions

7.2.1 Experiments

We implemented a prototype application, ECMT, in this thesis. However, some

more experiments are required to validate that ECMT can achieve all the objectives it is

designed for. The following provides some concerns in future experiments.

1. One objective o f ECMT is to improve developers’ estimation skills. Some

experiments are required to validate it.

2. The schedule pressure of using ECMT is the key to motivate developers to work

more productively. However, we need to investigate whether developers feel the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

65

appropriate pressure when using ECMT, where they get the pressure (time reports,

project summary, or to-do list), and how they react to such pressure.

7.2.2 Summary at project-level based on individual records

ECMT is targeted at one developer working alone. However, a software project is

usually developed by a team, and the overall view of a project cannot be gained directly

by having only the estimate data of each individual developer. Therefore, a new facility

targeted at integrating the data from team members is desired.

A client-sever architecture will be appropriate for this feature. The client will

implement most features of ECMT, but store all the data in the server. Besides storing

data, the server can analyze the data at project-level including making a summary as

follows.

By analyzing all developers’ time logs and estimates, the new facility should

provide a project report to the manager. This report should include two parts. One is the

work summary, which is composed by the amount o f work done and the average actual

work factor from the start date of the project until now. This part reflects the past

situation of the project. The other part analyzes the remaining work requirement and

remaining work capacity. The remaining work requirement is the combination of the

estimates o f all developers, and the remaining work capacity is the combination o f all

developers’ w ork capacities. E ach estim ate in ECMT is represen ted by a normal

distribution, so their combination is also a normal distribution. With the following

normal distribution,

D (T) = Remaining coding capacity -Total remaining coding requirement

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

66

(Where T is the remaining workdays to delivery date, remaining coding

capacity is the combination o f all developers’ work capacities, and total remaining

coding requirement is the combination of all developers’ remaining work requirements),

the report will provide the amount of confidence that the project will finish before

expected delivery date, as well as the number of workdays required given a confidence.

This report is an extension o f the personal summary in ECMT. Since it calculates the

data from all developers, it is able to reflect progress o f whole project.

7.2.3 Using PDA to capture work away from desk

When developers work away from desk, for example, discussing with colleagues,

thinking with paper, it is hard to record that time with applications in a desktop or even

a laptop. However, a PDA (Personal Digital Assistant) is appropriate for these

situations, since a PDA is small enough to be carried anywhere. Usually, a PDA has a

small screen and limited computation capability, so it is not very suitable for analyzing

complex data or visually displaying the analyzing result. Therefore, it is better to use a

PDA to record the time spent data, but synchronize it with the desktop ECMT. In this

way, we would not miss any valuable data, and get the same benefits as in ECMT.

7.2.4 Extendable modules to support estimation approaches

There are many estimation approaches available (section 3.2). Some of them

can be integrated into ECMT, for example, function points and Delphi approaches. A

pluggable module can be designed for each estimation approach, which provides

related support for estimation approach and convert its result into effective work days.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

67

That is feasible because ECMT only needs the estimation results measured by effective

work days, but does not care which way users get these estimations by.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Reference

Albrecht, A. J., J.R. Gaffney (1983). "Software function, source lines of code, and

development effort prediction: a software science validation." IEEE Trans, on

Softw. Eng. 9(6): 639-648.

Beck, K. (2000). eXtremeprogramming expla ined: embrace change. Reading, M A ;

Harlow, Addison-Wesley.

Blair, G. M. (1992). Personal time management for busy managers. Engineering

Management Journal. 2: 33-38.

Boehm, B. W. (1981). Software engineering economics. Englewood Cliffs, N.J.,

Prentice-Hall.

Boehm, B. W., Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K. Clark, Bert

Steece, A. Winsor Brown, Sunita Chulani, Chris Abts (2000). Software Cost

Estimation with Cocomo II, Prentice Hall PTR.

Brooks, F. P. (1995). The mythical man-month : essays on software engineering.

Reading, Mass., Addison-Wesley Pub. Co.

Brooks, F. P. (2003). "Three great challenges for half-century-old computer science."

Journal o f the ACM (JACM) 50(1): 25-26.

Covey, S. R. (1990). The Seven habits o f highly effective people : restoring the

character ethic. New York ; London, Fireside Book.

Covey, S. R., A. Roger Merrill, Rebecca R. Merrill (1996). First Things First: To Live,

to Love, to Learn, to Leave a Legacy, Fireside.

Davidson, J. P. (1999). The Complete Idiot's Guide to Managing Your Time, MacMillan

Publishing Company.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

DeMarco, T. and T. R. Lister (1987). Peopleware: productive projects and teams. New

York, NY, Dorset House Pub. Co.

El Emam, K. S., B.; Madhavji, N.H. (1996). Implementing concepts from the Personal

Software Process in an industrial setting VO -. Software Process, 1996.

Proceedings., Fourth International Conference on the.

Ferguson, P. H., W.S.; Khajenoori, S.; Macke, S.; Matvya, A. (1997). "Results of

applying the Personal Software Process." Computer 30(0018-9162): 24-31.

H. Sackman, W. J. E., E. E. Grant (1968). "Exploratory experimental studies comparing

online and offline programming performance." Communications o f the ACM

11(1): 3-11.

Heemstra, F. J. (1992). "Software cost estimation." Information and Software

Technology 34(10): 627-639.

Hughes, R. T. (1996). "Expert judgement as an estimating method." Information and

Software Technology 38(2): 67-75.

Humphrey, W. S. (1995). A discipline fo r software engineering. Reading, Mass.,

Addison-Wesley.

Humphrey, W. S. (1997). Introduction to the personal software process. Reading, Mass.,

Addison-Wesley Pub.

Humphrey, W. S. (2000). "The personal software process: status and trends." IEEE

Software 17(0740-7459): 71-75.

Koch, R. (1999). The 80/20 Principle: The Secret to Success by Achieving More with

Less, Doubleday.

Ma, Z. C., J.S.; Smith-Daniels, D.E. (2000). Causes and solutions fo r schedule slippage:

a survey o f software projects VO -. Performance, Computing, and

Communications Conference, 2000. IPCCC '00. Conference Proceeding of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70

IEEE International.

Penny, D. A. (2001). Software Release Planning, Managing at the Boundary between

Business Necessities and Software Development Realities. Toronto.

Penny, D. A. (2002). An Estimation-Based Management Framework for Enhancive

Maintenance in Commercial Software Products. Toronto,

van Genuchten, M. (1991). "Why is software late? An empirical study o f reasons for

delay in software development." Software Engineering, IEEE Transactions on

17(0098-5589): 582-590.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

